
Rute Users Tutorial and Exposition

http://www.obsidian.co.za/rute/

Copyright c 2000

Paul Sheer

March 28, 2000

Copying

This license dictates the conditions under which you may copy, modify and distribute this work.

This license may be updated at a later date to better reect the ideas of the \Open Content" movement. At

the moment, the Open Content community is still debating a license. When their license is complete, this work

will most probably adopt it. See http://www.opencontent.org/ for more details.

Exceptions to this license are likely to be granted for speci�c cases. Please email the author for details.

TERMS AND CONDITIONS

1. This work may not be reproduced in hard copy except for personal use. Further, it may not be reproduced

in hard copy for training material, nor for commercial gain, nor for public or organisation-wide distribution.

Further, it may not be reproduced in hard copy except where the intended reader of the hard copy initiates the

process of converting the work to hard copy.

2. The work may not be modi�ed except by a generic format translation utility, as may be appropriate for

viewing the work using an alternative electronic media. Such a modi�ed version of the work must clearly credit

the author, display this license, and include all copyright notices. Such a modi�ed version of the work must

clearly state the means by which it was translated, as well as where an original copy can be obtained.

3. Verbatim copies of the work may be redistributed through any electronic media. Modi�ed versions of the

work as per 2. above may be redistributed same, provided that they can reasonably be said to include, albeit in

translated form, all the original source �les.

4. The work is not distributed to promote any product, computer program or operating system. Even if

otherwise cited, all of the opinions expressed in the work are exclusively those of the author. The author

withdraws any implication that any statement made within this work can be justi�ed, veri�ed or corroborated.

NO WARRANTY

5. THE COPYRIGHT HOLDER(S) PROVIDE NO WARRANTY FOR THE ACCURACY OR

COMPLETENESS OF THIS WORK, OR TO THE FUNCTIONALITY OF THE EXAMPLE PROGRAMS

OR DATA CONTAINED THEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

6. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL ANY COPYRIGHT HOLDER, OR

ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE WORK AS PERMITTED

ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL

OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE WORK

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE

OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES), EVEN IF SUCH HOLDER OR OTHER PARTY

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ii

info@obsidian.co.za

+27 11 792-6500

+27 21 448-9265

Linux

Installations | Support | Networking

Intranet services | Web hosting | Firewalls

Development | Training | Outsourcing

iii

iv

Contents

1 Introduction 3

1.1 Read this �rst . 3

1.2 About Rute . 3

1.3 Is this stu� for beginners? . 3

1.4 I get very frustrated . 3

2 GPL License 5

3 Computing Sub-basics 11

3.1 Files . 11

3.2 Commands . 12

3.3 Logging in . 12

3.4 Listing and creating �les . 12

3.5 Directories . 13

4 Basic Commands 15

4.1 The ls command . 15

4.2 Error messages . 15

4.3 Wildcards . 18

4.4 Usage summaries . 21

4.5 Manipulating directories . 21

4.6 Relative vs. absolute pathnames . 22

4.7 System manual pages . 22

4.8 System info pages . 22

4.9 Some basic commands . 22

4.10 Compressed �les . 24

4.11 Searching for �les . 24

4.12 Searching within �les . 25

4.13 Copying to MS oppies . 25

4.14 Archives and backups . 26

4.15 The PATH . 26

v

CONTENTS CONTENTS

5 Regular Expressions 29

5.1 Basic regular expression . 29

5.2 The fgrep command . 30

5.3 nf ng notation . 30

5.4 + ? n< n> () | notation . 30

5.5 Regular expression sub-exressions . 31

6 Shell Scripting 33

6.1 Introduction . 33

6.2 Looping | while statement . 34

6.3 Looping | for statement . 34

6.4 Looping over glob expressions . 35

6.5 The case statement . 36

6.6 Using functions | function keyword . 36

6.7 Command line args | shift keyword . 37

6.8 Command line args | $@ and $0 . 38

6.9 Single forward quote notation . 38

6.10 Double quote notation . 39

6.11 Backward quote substitution . 39

7 Streams and sed | the stream editor 41

7.1 Introduction . 41

7.2 Tutorial . 41

7.3 Piping using | notation . 41

7.4 A complex piping example . 42

7.5 Redirecting streams with >& . 42

7.6 Using sed to edit streams . 43

7.7 Regular expression sub-exressions . 44

8 Processes and environment variables 45

8.1 Introduction . 45

8.2 Tutorial . 45

8.2.1 Controlling jobs . 45

8.2.2 killing a process, sending a process a signal . 47

8.2.3 List of comman signals . 48

8.2.4 Environment 's of processes . 48

9 Mail 53

9.1 Sending and reading mail . 54

9.2 The SMTP protocol . 54

vi

CONTENTS CONTENTS

10 User accounts and ownerships 57

10.1 Users and Groups . 57

10.2 File ownerships . 57

10.3 The password �le /etc/passwd . 57

10.4 The shadow password �le /etc/shadow . 58

10.5 The groups �le /etc/group . 59

10.6 Manually creating a user account . 60

10.7 Automatically creating a user account . 60

10.8 User logins . 60

11 Using Internet Services 63

11.1 telnet and rlogin . 63

11.2 FTP . 63

11.3 finger . 64

11.4 Sending �les by email . 64

12 Linux resources 67

12.1 FTP sites and the sunsite mirror . 67

12.2 HTTP | web sites . 68

12.3 Mailing lists . 68

12.4 Newsgroups . 69

13 Permission and Modi�cation Times 71

13.1 Permissions . 71

13.2 Modi�cation times . 72

14 Symbolic and Hard Links 75

14.1 Soft links . 75

14.2 Hard links . 76

15 Pre-installed Documentation 77

16 Unix Directory Layout 81

17 Unix devices 85

17.1 Device �les . 85

17.2 Block and character devices . 85

17.3 Major and Minor device numbers . 86

17.4 Miscellaneous devices . 86

17.5 dd and tricks . 88

17.6 Creating devices . 89

vii

CONTENTS CONTENTS

18 Partitioning, formatting and mounting 91

18.1 The structure of a physical disk . 91

18.2 Partitioning . 92

18.3 Formatting devices . 94

18.4 mounting stu� . 96

18.5 Repairing �le-systems . 97

18.6 Automatic mounting with /etc/fstab . 98

18.7 RAM and loopback . 99

19 Trivial introduction to C 101

19.1 C fundamentals . 101

19.1.1 The simplest C program . 101

19.1.2 Variables and types . 102

19.1.3 Functions . 103

19.1.4 for, while, if and switch statements . 103

19.1.5 Strings, arrays and memory allocation . 104

19.1.6 String operations . 106

19.1.7 File operations . 107

19.1.8 Reading command-line arguments inside C programs . 108

19.1.9 A more complicated example . 108

19.1.10#include and prototypes . 109

19.1.11C comments . 110

19.1.12#define and #if | C macros . 110

19.2 C Libraries . 111

19.3 C projects | Makefiles . 113

19.4 DLL's . 114

20 Introduction to IP 115

20.1 Internet Communication . 115

20.2 Special IP Addresses . 116

20.3 Network Masks and Addresses . 116

20.4 Computers on LAN . 116

20.5 Con�guring Interfaces . 117

20.6 Con�guring Routing . 118

20.7 Setting startup scripts . 119

20.8 Diagnostic utilities . 119

20.8.1 ping . 119

20.8.2 traceroute . 120

20.8.3 tcpdump . 120

viii

CONTENTS CONTENTS

21 DNS and Name Resolution 121

21.1 Top Level Domains (TLD's) . 121

21.2 Name resolution . 122

21.3 Con�guration . 124

21.4 Reverse lookups . 126

21.5 Authoritive for a domain . 126

21.6 host, ping and whois . 126

21.7 The nslookup command . 127

21.7.1 NS, MX, PTR, A and CNAME . 127

22 named | Domain Name Server 129

22.1 Con�guring named for dialup use . 135

22.2 Secondary or slave DNS servers . 136

23 PPP 139

23.1 Basic Dialup . 139

23.1.1 Determining your chat script . 140

23.1.2 CHAP and PAP . 141

23.1.3 Running pppd . 141

23.2 Dial on demand . 142

23.3 Dynamic DNS . 143

23.4 Using tcpdump to watch your connection . 144

23.5 Using ISDN instead of Modems . 144

24 Case Example A 147

24.1 University Lab . 147

24.2 Spec and quote . 148

24.3 Dealing with Universities . 148

24.4 Networking 8 Machines . 149

24.5 Installation and con�guration of Linux . 149

24.6 Writing of the low level ADC driver . 150

24.7 Writing of a graphical interface . 150

24.8 Speci�cations . 151

25 Case Example B 153

25.1 Overall Con�guration . 153

25.2 setuid scripts and security . 154

25.3 Custom rxvt for Progress . 155

25.4 Mail server . 155

26 Corporate Frequently Asked Questions 157

26.1 Linux Overview . 157

26.1.1 What is Linux? . 157

ix

CONTENTS CONTENTS

26.1.2 What are Unix systems used for? What can Linux do? . 157

26.1.3 What other platforms does it run on including the PC? 158

26.1.4 What is meant by GNU/Linux as opposed to Linux? . 158

26.1.5 What web pages should I look at? . 158

26.1.6 What are Debian, RedHat, Caldera and Suse etc. Explain the di�erent Linux distributions?159

26.1.7 Who developed Linux? . 162

26.1.8 Why should I not use Linux? . 162

26.2 Linux, GNU and Licensing . 162

26.2.1 What is Linux's license? . 162

26.2.2 What is GNU? . 163

26.2.3 Why is GNU software better than proprietary software? 163

26.2.4 Explain the restrictions of Linux's `free' GNU General Public (GPL) software license. . . 164

26.2.5 If Linux is free, where do companies have the right to make money o� selling CD's? . . . 164

26.2.6 What if Linus Torvalds decided to change the copyright on the kernel? Could he sell out

to a company? . 164

26.2.7 What if Linus Torvalds stopped supporting Linux? What if kernel development split? . . 164

26.2.8 What is Open Source vs Free vs Shareware? . 164

26.3 Linux Distributions . 165

26.3.1 If everyone is constantly modifying the source, isn't this bad for the consumer? How is the

user protected from bogus software? . 165

26.3.2 There are so many di�erent Linux versions - is this not confusion and incompatibility? . . 165

26.3.3 Will a program from one Linux Distribution run on another? How compatible are the

di�erent distributions? . 166

26.3.4 What is the best distribution to use? . 166

26.3.5 Where do I get Linux? . 166

26.3.6 How do I install Linux? . 167

26.4 Linux Support . 167

26.4.1 Where does a person get Linux support? My bought software is supported - how does

Linux compete? . 167

26.4.2 Should I buy a reference book for Linux? Where do I get one? 168

26.4.3 What companies support Linux in South Africa? . 168

26.4.4 What mailing lists can I subscribe to in South Africa? . 168

26.5 Linux Compared to Other Systems . 168

26.5.1 What is the most popular Unix in the world? . 168

26.5.2 How many Linux systems are there out there? . 168

26.5.3 What is the TOTAL cost of installing and running NT compared to a Linux system? . . . 169

26.5.4 What is the TOTAL cost of installing and running a Linux system compared to a propri-

etary Unix system? . 169

26.5.5 How does Linux compare to other operating systems in performance? 169

26.5.6 What about SMP and a journalling �le-system? Is Linux enterprise ready? 170

26.5.7 Does Linux only support 2 Gig of memory and 128 Meg of swap? 170

26.5.8 Is UNIX not antiquated? Is its security model not outdated? 171

26.5.9 What is C2 certi�cation? Windows NT has it, why doesn't Linux have it? 171

x

CONTENTS CONTENTS

26.5.10What are claimed to be the principle di�erences between Unix and NT that make Unix

advocates against NT? . 172

26.5.11What do Linux users say when they compare SCOs Unix to Linux? Should I upgrade to

Linux from SCOs Unix? . 173

26.5.12What do Linux users say when they compare Solaris/SunOS to Linux? Should I switch to

Linux? . 173

26.5.13How does FreeBSD compare to Linux? . 173

26.5.14Should I switch to Linux from IRIX? . 174

26.6 Technical . 174

26.6.1 Are Linux CD's readable from Win95/98/00 ? . 174

26.6.2 Can I run Linux and Win95 on the same machine? . 174

26.6.3 How much space do I need to install Linux? . 174

26.6.4 What are the hardware requirements? . 174

26.6.5 What hardware is supported? Will my sound/graphics/network card work? 175

26.6.6 Can I view my Win95/98/00/NT, DOS, etc. �les under Linux? 175

26.6.7 Can I run DOS programs under Linux? . 175

26.6.8 Can I recompile Win95/98/00 programs under Linux? . 175

26.6.9 Can I run Win95/98/00 programs under Linux? . 175

26.6.10I have heard that Linux does not su�er from virus attacks. Is it true that there is no threat

of viruses with Unix systems? . 176

26.6.11Is Linux Y2K compliant? . 176

26.6.12Is Linux as secure as other servers? . 176

26.7 Software . 177

26.7.1 What oÆce suites are there for Linux? . 177

26.7.2 What is the best way to do professional typesetting on Linux? 177

26.7.3 What is the X Window System? Is there a graphical user interface for Unix? 177

26.7.4 What is Gtk? . 178

26.7.5 What is Gnome? . 178

26.7.6 What is Qt? . 179

26.7.7 What is KDE? . 179

26.7.8 What is Gimp? . 179

26.7.9 What media players, image viewers, mail/irc/news clients, and web browsers are available

for Linux? . 179

26.7.10Can I use Visual Basic (VB) under Linux? What Unix alternatives are there? 179

26.7.11Can I run Active Server Pages under Linux? . 180

26.7.12Can I develop with Java under Linux? . 180

26.7.13How do I develop platform independent programs under Linux? 180

26.7.14Can I develop using C/C++ under Linux? . 180

26.7.15What Integrated Development Environments (IDE's) are available for Linux? How do I

develop my own applications? . 180

26.7.16What other development languages are available for Linux? What is typically being used? 181

26.7.17Are there SQL servers available for Linux? Are there free SQL servers? 181

26.7.18Is there a SWAN (Secure Wide Area Network) available for Linux? 181

xi

CONTENTS CONTENTS

26.8 Microsoft Issues . 182

26.8.1 What is the story with Microsoft being ruled a monopoly? 182

1

CONTENTS CONTENTS

2

Chapter 1

Introduction

1.1 Read this �rst

Rute must be read from beginning to end, in consecutive order. You must also practice each example.

1.2 About Rute

Chapter 15 contains a fairly comprehensive list of all reference documentation available on your system. Rute

aims to supplement this material with a tutorial that is both comprehensive and independent of any previous

Unix knowledge.

Rute is a dependency consistent tutorial document. This means that you can (and must) read it from

beginning to end in consecutive order.

Rute also satis�es the requirements for course notes for a Linux training course. Here in South Africa, the

initial part of Rute is being used for a 16 hour Linux training course given in eight lessons.

1.3 Is this stu� for beginners? How can I learn advanced adminis-

tration?

On Unix, anyone who can read system documentation can set up any service. No one need teach you how to set

up an Internet service like Web, mail, FTP, SQL etc. and there are no books worth buying on these subjects.

If you don't know where to �nd the documentation for these packages on your �le system, or they don't make

sense to you when you read them, then you need to read Rute (again).

Creativity and ingenuity are requirements for being a Unix administrator. They are your own responsibility.

Never before has everything you ever needed to do anything, been available in a single package | this is Linux.

How do I ? There is one answer: it is already on your computer, waiting for you to read it.

1.4 I get very frustrated with Unix documentation that I don't un-

derstand

Any system reference will require you to read it at least three times before you get a reasonable picture of what

to do. If you need to read it more than three times, then there is probably some other information that you

really should be reading �rst. If you are only reading a document once, then you are being too impatient with

yourself.

It is very important to identify the exact terms that you fail to understand in a document. Always try to

back-trace to the precise word before you continue.

3

1.4. I GET VERY FRUSTRATED CHAPTER 1. INTRODUCTION

It is usually cheaper and faster to read a document three times than to pay someone to train you. Don't be

lazy.

Don't learn new things according to deadlines. Your Unix knowledge is going to evolve by grace and fasci-

nation, not by pressure.

4

Chapter 2

The GNU General Public License

Version 2

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,

the GNU General Public License is intended to guarantee your freedom to share and change free software{to

make sure the software is free for all its users. This General Public License applies to most of the Free Software

Foundation's software and to any other program whose authors commit to using it. (Some other Free Software

Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your

programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are

designed to make sure that you have the freedom to distribute copies of free software (and charge for this service

if you wish), that you receive source code or can get it if you want it, that you can change the software or use

pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you

to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of

the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients

all the rights that you have. You must make sure that they, too, receive or can get the source code. And you

must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this license which gives

you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there

is no warranty for this free software. If the software is modi�ed by someone else and passed on, we want its

recipients to know that what they have is not the original, so that any problems introduced by others will not

reect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that

redistributors of a free program will individually obtain patent licenses, in e�ect making the program proprietary.

To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at

all.

5

CHAPTER 2. GPL LICENSE

The precise terms and conditions for copying, distribution and modi�cation follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder

saying it may be distributed under the terms of this General Public License. The "Program", below, refers

to any such program or work, and a "work based on the Program" means either the Program or any

derivative work under copyright law: that is to say, a work containing the Program or a portion of it,

either verbatim or with modi�cations and/or translated into another language. (Hereinafter, translation is

included without limitation in the term "modi�cation".) Each licensee is addressed as "you".

Activities other than copying, distribution and modi�cation are not covered by this License; they are outside

its scope. The act of running the Program is not restricted, and the output from the Program is covered

only if its contents constitute a work based on the Program (independent of having been made by running

the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium,

provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice

and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any

warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option o�er warranty

protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the

Program, and copy and distribute such modi�cations or work under the terms of Section 1 above, provided

that you also meet all of these conditions:

a) You must cause the modi�ed �les to carry prominent notices stating that you changed the �les and

the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived

from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under

the terms of this License.

c) If the modi�ed program normally reads commands interactively when run, you must cause it, when

started running for such interactive use in the most ordinary way, to print or display an announcement

including an appropriate copyright notice and a notice that there is no warranty (or else, saying that

you provide a warranty) and that users may redistribute the program under these conditions, and

telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on the Program is not required to

print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections of that work are not

derived from the Program, and can be reasonably considered independent and separate works in themselves,

then this License, and its terms, do not apply to those sections when you distribute them as separate works.

But when you distribute the same sections as part of a whole which is a work based on the Program, the

distribution of the whole must be on the terms of this License, whose permissions for other licensees extend

to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by

you; rather, the intent is to exercise the right to control the distribution of derivative or collective works

based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work

based on the Program) on a volume of a storage or distribution medium does not bring the other work

under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable

form under the terms of Sections 1 and 2 above provided that you also do one of the following:

6

CHAPTER 2. GPL LICENSE

a) Accompany it with the complete corresponding machine-readable source code, which must be dis-

tributed under the terms of Sections 1 and 2 above on a medium customarily used for software

interchange; or,

b) Accompany it with a written o�er, valid for at least three years, to give any third party, for a charge no

more than your cost of physically performing source distribution, a complete machine-readable copy

of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the o�er to distribute corresponding source

code. (This alternative is allowed only for noncommercial distribution and only if you received the

program in object code or executable form with such an o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�cations to it. For

an executable work, complete source code means all the source code for all modules it contains, plus any

associated interface de�nition �les, plus the scripts used to control compilation and installation of the

executable. However, as a special exception, the source code distributed need not include anything that is

normally distributed (in either source or binary form) with the major components (compiler, kernel, and

so on) of the operating system on which the executable runs, unless that component itself accompanies the

executable.

If distribution of executable or object code is made by o�ering access to copy from a designated place, then

o�ering equivalent access to copy the source code from the same place counts as distribution of the source

code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this

License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will

automatically terminate your rights under this License. However, parties who have received copies, or

rights, from you under this License will not have their licenses terminated so long as such parties remain

in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you

permission to modify or distribute the Program or its derivative works. These actions are prohibited by law

if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based

on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions

for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically

receives a license from the original licensor to copy, distribute or modify the Program subject to these

terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights

granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not

limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)

that contradict the conditions of this License, they do not excuse you from the conditions of this License.

If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other

pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a

patent license would not permit royalty-free redistribution of the Program by all those who receive copies

directly or indirectly through you, then the only way you could satisfy both it and this License would be

to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance

of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims

or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of

the free software distribution system, which is implemented by public license practices. Many people have

made generous contributions to the wide range of software distributed through that system in reliance

on consistent application of that system; it is up to the author/donor to decide if he or she is willing to

distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this

License.

7

CHAPTER 2. GPL LICENSE

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copy-

righted interfaces, the original copyright holder who places the Program under this License may add an

explicit geographical distribution limitation excluding those countries, so that distribution is permitted

only in or among countries not thus excluded. In such case, this License incorporates the limitation as if

written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from

time to time. Such new versions will be similar in spirit to the present version, but may di�er in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a version number of this

License which applies to it and "any later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free Software Foundation. If the Program

does not specify a version number of this License, you may choose any version ever published by the Free

Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are

di�erent, write to the author to ask for permission. For software which is copyrighted by the Free Software

Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision

will be guided by the two goals of preserving the free status of all derivatives of our free software and of

promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NOWARRANTY FOR THE

PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPTWHEN OTHERWISE

STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE

PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUTNOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-

FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,

YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL

ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-

TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-

CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POS-

SIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way

to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source

�le to most e�ectively convey the exclusion of warranty; and each �le should have at least the "copyright" line

and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

8

CHAPTER 2. GPL LICENSE

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it

under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public

License. Of course, the commands you use may be called something other than `show w' and `show c'; they

could even be mouse-clicks or menu items{whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright

disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes

passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your

program is a subroutine library, you may consider it more useful to permit linking proprietary applications with

the library. If this is what you want to do, use the GNU Library General Public License instead of this License.

9

CHAPTER 2. GPL LICENSE

10

Chapter 3

Computing Sub-basics

The best way of thinking about how a computer stores and manipulates1 information2 is to ask yourself how you

would. Most often the way a computer works is exactly the way one would expect it to if you were inventing it

for the �rst time. The only limitation on this are those imposed by logical feasibility and imagination, but most

anything else is allowed.

3.1 Files

Common to every computer system invented is the �le. A �le holds a single contiguous block of data. Any kind

of data can be stored in a �le and there is no data that cannot be stored in a �le. Furthermore, there is no kind

of data that is stored anywhere else except in a �le. A �le holds data of the same type, for instance a single

picture will be stored in one �le. A piece of text representing an essay will be stored in one �le. It is uncommon

for di�erent types of data (say text and pictures) to be stored together in the same �le because it is inconvenient.

A computer will typical contain about 10000 �les that have a great many purposes. Each �le has its own name.

The �le name on a Linux or Unix machine can be up to 256 characters long and may contain letters, numbers

and even some punctuation. The �le name is usually explanatory | you might call a letter you wrote to your

friend something like Mary Jones.letter (from now on, whenever you see the typewriter font3, it means that

those are words that might be read of the screen of the computer). The name you choose has no meaning to

the computer, and could just as well be any other combination of letters or digits, however you will refer to that

data with that �le name whenever you give an instruction to the computer regarding that data. It is important

to internalize4 the fact that computers do not have an interpretation for anything. A computer operates with

a set of interdepenent5 logical rules | it has no �xed way of working; for example, the reason a computer has

�les at all is because computer programmers have decided that that is the most universal and convenient way of

storing data, and if you think about it, it really is.

The data in each �le is merely a long list of numbers. The size of the �le is just the length of the list of

numbers. Each number is called a byte and can be from 0 to 255. This means that no �le can contain any number

over 255 or less than zero. Also, there is no type of data which cannot be represented as a list of numbers. Your

letter to Mary will be encoded into numbers in order to be stored on the computer. We all know that a television

picture is just a sequence of dots on the screen that scan from left to right | it is in this way that a picture might

be represented in a �le: i.e. as a sequence of numbers where each number is interpreted as a level of brightness;

0 for black, and 255 for white. For your letter, the convention is to store an A as 65 a B as 66 and so on. Each

punctuation character also has a numerical equivalent.

1Manage skillfully
2Anything that you would like not to have to remember yourself
3A style of print.
4Think with that point of view.
5Without an apex.

11

3.2. COMMANDS CHAPTER 3. COMPUTING SUB-BASICS

3.2 Commands

The second thing common to every computer system invented is the command. You tell the computer what to

do with single words | one at a time | typed into the computer. Modern computers appear to have done away

the typing in of commands by having beautiful graphical displays that work with a mouse, but, fundamentally,

all that is happening is that commands are being secretely typed in for you. Using commands is still the only

way to have complete power over the computer. You don't really know anything about a computer until you

get to grips with the commands it uses. Using a computer will very much involve typing in a word, pressing the

enter key, and then waiting for the computer screen to spit something back at you. Most commands are typed

in to do something useful to a �le.

3.3 Logging in and changing your password

Turn on your Linux box. You will then see the login prompt6. It will state the name of the computer (each

computer has a name - typically consisting of about eight lowercase letters) and then word login:. Now you

should type your login name7, and then press the `Enter' or `Return' key8. A password prompt will appear

afterwhich you should type your password9, and then press the `Enter' or `Return' key again. The screen might

show some message and prompt you for a login again - in this case you have probably typed something incorrectly

and should give it another try. From now on, you will be expected to know that the `Enter' or `Return' key

should be pressed at the end of every line you type in, analogous to the mechanical typewriter. You will also

be expected to know that human error is very common | when you type something incorrectly the computer

will give an error message, and you should try again until you get it right. It is very uncommon for a person to

understand computer concepts after a �rst reading, or to get commands to work the �rst try.

Now that you have logged in, you will see a shell10prompt. This is where you will spend most of your time

as a system adminstrator11, but it needn't look as bland you see now. Your �rst excersize is to change your

password. Type the command passwd. You will then be asked for a new password and then asked to con�rm that

password12. Then you will arrive back in the shell. The password you have chosen will take e�ect immediately,

replacing the previous password that you used to log in. The password command might also have given some

message indicating what e�ect it actually had. You may not understand the message, but you should try to get

an idea of whether the conatation13 was positive or negative.

When you are using a computer, it is useful to imagine yourself as being in di�erent places within the computer,

rather than just typing commands into it. After you entered the passwd command, you were no longer in the

shell, but moved into the password place. You could not use the shell until you had move out of the passwd

command.

3.4 Listing and creating �les

Type in the command ls. ls is short for list, abbreviated to two letters like most other Unix commands. ls will

list all your current �les. You may �nd that ls does nothing, but just returns you back to the shell. This would

be because you have no �les just yet. Most Unix commands do not give any kind of message unless something

went wrong (the passwd command above was an exception). If there were �les, you would see their names listed

rather blandly in columns with no indication of what they are for.

There are many ways of creating a �le. Type cat > Mary Jones.letter and then type out a few lines of

text. You will use this �le in later examples. The cat command is used here to write from the keyboard into a �le

6A prompt is one or more characters displayed on the screen that you are expected to type something in after.
7A sequence of about eight lower case letters that would have been assigned to you by your computer administrator or some other

source.
8Some keyboards have an key labelled `Enter' while others label the same key `Return'.
9Your password may be the same as your login name. Note that your password will not be shown on the screen as you type it,

but will be invisible.
10A place where you are able to type commands.
11Computer manager.
12The password you choose consist of letters, numbers and punctuation | you will see later on why this security measure is a

good idea. Take good note of your password for the next time you log in.
13Implied meaning.

12

CHAPTER 3. COMPUTING SUB-BASICS 3.5. DIRECTORIES

Mary Jones.letter. At the end of the last line, press Enter one more time and then press Ctrl-C14. Now, if you

type ls again, you will see the �le Mary Jones.letter listed with any other �les. Type cat Mary Jones.letter

without the >. You will see that the command cat writes the contents of a �le to the screen, allowing you to

view your letter. It should match exactly what you typed in.

3.5 Directories

Before we mentioned that a system may typically contain 10000 �les. It would be combersome if you were to

see all 10000 of them whenever you typed ls, hence �les are placed in di�erent \cabinets" so that �les of the

same type get placed together and can be easily isolated from other �les. For instance your letter above might

go in a seperate \cabinet" with other letters. A \cabinet" in computer terms is actually called a directory. This

is the third commonality between all computer systems: all �les go in one or other directory. To get and idea of

how this works, type the command mkdir letters where mkdir stands for make directory. Now type ls. This

will show the �le Mary Jones.letter as well as a new �le letters. The �le letters is not really a �le at all,

but the name of a directory in which a number of other �les can be placed. To go into the directory letters

you can type cd letters where cd stands for change directory. Since the directory is newly created, you would

not expect it to contain any �les, and typing ls will verify this by not listing anything. You can now create a

�le using the cat command as you did before (try this). To go back into the original directory that you were in

you can use the command cd .. where the .. has a special meaning of taking you out of the current directory.

Type ls again to verify that you have actually gone up a directory.

It is however bothersome that one cannot tell the di�erence between �les and directories. The way to do this

is with the ls -l command. -l stands for long format. If you enter this command you will see a lot of details

about the �les that may not yet be comprehensible to you. The three things you can watch for are the �lename

on the far right, the �le size (i.e. the number of bytes that the �le contains) in the third column from the right,

and the �le type on the far left. The �le type is a string of letters of which you will only be interested in one:

the character on the far left is either a - or a d. A - indicates a regular �le, and a d indicates a directory. The

command ls -l Mary Jones.letter will list only the single �le Mary Jones.letter and is useful for �nding

out the size of a single �le.

In fact, there is no limitation on how many directories you can create within each other. In what follows, you

will get a glimpse of the layout of all the directories on the computer.

Type the command cd / where the / has the special meaning to go to the top most directory on the computer

called the root directory. Now type ls -l. The listing may be quite long and may go o� the top of the screen.

You will see that most, if not all, are directories. You can now practice moving around the system with the cd

command, not forgetting that cd .. takes you up and cd / takes you to the root directory.

When you have �nished, log out of the computer using the logout command.

14The Ctrl key held down while pressing the C key.

13

3.5. DIRECTORIES CHAPTER 3. COMPUTING SUB-BASICS

14

Chapter 4

Basic Commands

All of Unix is case sensitive. A command with even

a single letter's capitalisation altered, is considered to

be a completely di�erent command. The same goes

for �les, directories, con�guration �le formats and

the syntax all native programming languages.

4.1 The ls command, hidden �les, command-line options

In addition to directories and ordinary text �les, there are other types of �les, although all �les contain the same

kind of data (i.e. a list of bytes). The hidden �le is a �le that will not ordinarily appear when you type the

command ls to list the contents of a directory. To see a hidden �le you have to use the command ls -a. The

-a option means to list all �les as well as hidden �les. Another varient ls -l which lists the contents in long

format. The - is used in this way to indicate variations on a command. These are called command-line options

or command-line arguments, and most Unix commands can take a number of them. They can be strung together

in any way that is convenient1, for example ls -a -l, ls -l -a or ls -al | either of these will list all �les in

long format.

All GNU commands take an additional argument -h and --help. You can type a command with just this

on the command line and get a usage summary. This is some brief help that will summarise options that you

may have forgotten if you are already familiar with the command | it will never be an exhaustive description

of the usage. See the later explanation about man pages.

The di�erence between a hidden �le and an ordinary �le is merely that the �le name of a hidden �le starts

with a period. Hiding �les in this way is not for security, but for convenience.

The option ls -l is somewhat cryptic for the novice. Its more explanatory version is ls --format=long.

Simlarly, the all option can be given as ls --all, and will mean the same thing as ls -a.

4.2 Error messages

Although commands usually do not display a message when they execute2 succesfully, commands do report

errors in a consistant format. The format will vary from one command to another, but will often appear as

follows: command-name: what was attempted: error message. For example, the command ls -l qwerty will

give an error ls: qwerty: No such file or directory. What actually happened was that the command ls

attempted to read the �le qwerty. Since this �le does not exist, an error code 2 arose. This error code corresponds

to a situation when a �le or directory is not found. The error code is automatically translated into the sentance

No such file or directory. It is important to understand the distinction between an explanatory message

that a command gives (such as the messages reported by the passwd command in the previous chapter) and an

1Commands under the GNU free software license are superior in this way: they have a greater number of options than traditional

Unix commands and are therefore more exable.
2The computer accepted and processed the command.

15

4.2. ERROR MESSAGES CHAPTER 4. BASIC COMMANDS

error code that was just translated into a sentance. This is because a lot of di�erent kinds of problems can result

in an identical error code (there are only about a hundred di�erent error codes). Experience will teach you that

error messages do not tell you what to do, only what went wrong, and should not be taken as gospel.

A complete list of basic error codes can be found in /usr/include/asm/errno.h. In addition to these, several

other header �le3 may de�ne there own error code. Under Unix however, these are 99% of all the errors you are

ever likely to get. Most of them will be meaningless to you at the moment, but are included here as a reference:

#ifndef _I386_ERRNO_H

#define _I386_ERRNO_H

#define EPERM 1 /* Operation not permitted */

5 #define ENOENT 2 /* No such file or directory */

#define ESRCH 3 /* No such process */

#define EINTR 4 /* Interrupted system call */

#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

10 #define E2BIG 7 /* Arg list too long */

#define ENOEXEC 8 /* Exec format error */

#define EBADF 9 /* Bad file number */

#define ECHILD 10 /* No child processes */

#define EAGAIN 11 /* Try again */

15 #define ENOMEM 12 /* Out of memory */

#define EACCES 13 /* Permission denied */

#define EFAULT 14 /* Bad address */

#define ENOTBLK 15 /* Block device required */

#define EBUSY 16 /* Device or resource busy */

20 #define EEXIST 17 /* File exists */

#define EXDEV 18 /* Cross -device link */

#define ENODEV 19 /* No such device */

#define ENOTDIR 20 /* Not a directory */

#define EISDIR 21 /* Is a directory */

25 #define EINVAL 22 /* Invalid argument */

#define ENFILE 23 /* File table overflow */

#define EMFILE 24 /* Too many open files */

#define ENOTTY 25 /* Not a typewriter */

#define ETXTBSY 26 /* Text file busy */

30 #define EFBIG 27 /* File too large */

#define ENOSPC 28 /* No space left on device */

#define ESPIPE 29 /* Illegal seek */

#define EROFS 30 /* Read -only file system */

#define EMLINK 31 /* Too many links */

35 #define EPIPE 32 /* Broken pipe */

#define EDOM 33 /* Math argument out of domain of func */

#define ERANGE 34 /* Math result not representable */

#define EDEADLK 35 /* Resource deadlock would occur */

#define ENAMETOOLONG 36 /* File name too long */

40 #define ENOLCK 37 /* No record locks available */

#define ENOSYS 38 /* Function not implemented */

#define ENOTEMPTY 39 /* Directory not empty */

#define ELOOP 40 /* Too many symbolic links

encountered */

45 #define EWOULDBLOCK EAGAIN /* Operation would block */

#define ENOMSG 42 /* No message of desired type */

#define EIDRM 43 /* Identifier removed */

#define ECHRNG 44 /* Channel number out of range */

#define EL2NSYNC 45 /* Level 2 not synchronized */

50 #define EL3HLT 46 /* Level 3 halted */

#define EL3RST 47 /* Level 3 reset */

#define ELNRNG 48 /* Link number out of range */

#define EUNATCH 49 /* Protocol driver not attached */

#define ENOCSI 50 /* No CSI structure available */

3Files ending in .h

16

CHAPTER 4. BASIC COMMANDS 4.2. ERROR MESSAGES

55 #define EL2HLT 51 /* Level 2 halted */

#define EBADE 52 /* Invalid exchange */

#define EBADR 53 /* Invalid request descriptor */

#define EXFULL 54 /* Exchange full */

#define ENOANO 55 /* No anode */

60 #define EBADRQC 56 /* Invalid request code */

#define EBADSLT 57 /* Invalid slot */

#define EDEADLOCK EDEADLK

65 #define EBFONT 59 /* Bad font file format */

#define ENOSTR 60 /* Device not a stream */

#define ENODATA 61 /* No data available */

#define ETIME 62 /* Timer expired */

#define ENOSR 63 /* Out of streams resources */

70 #define ENONET 64 /* Machine is not on the network */

#define ENOPKG 65 /* Package not installed */

#define EREMOTE 66 /* Object is remote */

#define ENOLINK 67 /* Link has been severed */

#define EADV 68 /* Advertise error */

75 #define ESRMNT 69 /* Srmount error */

#define ECOMM 70 /* Communication error on send */

#define EPROTO 71 /* Protocol error */

#define EMULTIHOP 72 /* Multihop attempted */

#define EDOTDOT 73 /* RFS specific error */

80 #define EBADMSG 74 /* Not a data message */

#define EOVERFLOW 75 /* Value too large for defined data

type */

#define ENOTUNIQ 76 /* Name not unique on network */

#define EBADFD 77 /* File descriptor in bad state */

85 #define EREMCHG 78 /* Remote address changed */

#define ELIBACC 79 /* Can not access a needed shared

library */

#define ELIBBAD 80 /* Accessing a corrupted shared

library */

90 #define ELIBSCN 81 /* . lib section in a.out corrupted */

#define ELIBMAX 82 /* Attempting to link in too many shared

libraries */

#define ELIBEXEC 83 /* Cannot exec a shared library

directly */

95 #define EILSEQ 84 /* Illegal byte sequence */

#define ERESTART 85 /* Interrupted system call should be

restarted */

#define ESTRPIPE 86 /* Streams pipe error */

#define EUSERS 87 /* Too many users */

100 #define ENOTSOCK 88 /* Socket operation on non -socket */

#define EDESTADDRREQ 89 /* Destination address required */

#define EMSGSIZE 90 /* Message too long */

#define EPROTOTYPE 91 /* Protocol wrong type for socket */

#define ENOPROTOOPT 92 /* Protocol not available */

105 #define EPROTONOSUPPORT 93 /* Protocol not supported */

#define ESOCKTNOSUPPORT 94 /* Socket type not supported */

#define EOPNOTSUPP 95 /* Operation not supported on transport

endpoint */

#define EPFNOSUPPORT 96 /* Protocol family not supported */

110 #define EAFNOSUPPORT 97 /* Address family not supported by

protocol */

#define EADDRINUSE 98 /* Address already in use */

#define EADDRNOTAVAIL 99 /* Cannot assign requested address */

#define ENETDOWN 100 /* Network is down */

115 #define ENETUNREACH 101 /* Network is unreachable */

#define ENETRESET 102 /* Network dropped connection because

of reset */

#define ECONNABORTED 103 /* Software caused connection abort */

17

4.3. WILDCARDS CHAPTER 4. BASIC COMMANDS

#define ECONNRESET 104 /* Connection reset by peer */

120 #define ENOBUFS 105 /* No buffer space available */

#define EISCONN 106 /* Transport endpoint is already

connected */

#define ENOTCONN 107 /* Transport endpoint is not connected */

#define ESHUTDOWN 108 /* Cannot send after transport endpoint

125 shutdown */

#define ETOOMANYREFS 109 /* Too many references : cannot splice */

#define ETIMEDOUT 110 /* Connection timed out */

#define ECONNREFUSED 111 /* Connection refused */

#define EHOSTDOWN 112 /* Host is down */

130 #define EHOSTUNREACH 113 /* No route to host */

#define EALREADY 114 /* Operation already in progress */

#define EINPROGRESS 115 /* Operation now in progress */

#define ESTALE 116 /* Stale NFS file handle */

#define EUCLEAN 117 /* Structure needs cleaning */

135 #define ENOTNAM 118 /* Not a XENIX named type file */

#define ENAVAIL 119 /* No XENIX semaphores available */

#define EISNAM 120 /* Is a named type file */

#define EREMOTEIO 121 /* Remote I/O error */

#define EDQUOT 122 /* Quota exceeded */

140

#define ENOMEDIUM 123 /* No medium found */

#define EMEDIUMTYPE 124 /* Wrong medium type */

#endif

4.3 Wildcards, names, extensions and glob expressions

ls can produce a lot of output if there are a large number of �les in a directory. Now say that we are only

interested in �les that ended with the letters tter. To list only these �les you can use ls *tter. The * matches

any number of any other characters. So, for example, the �les Tina.letter, Mary Jones.letter and the �le

splatter, would all be listed if they were present. While a �le Harlette would not be listed. While the *

matches any length of characters, then ? matches only one character. For example the command ls ?ar* would

list the �les Mary Jones.letter and Harlette.

When naming �les, it is a good idea to choose names that group �les of the same type together. We do this

by adding an extension to the �le name that describes the type of �le it is. We have already demonstrated this

by calling a �le Mary Jones.letter instead of just Mary Jones. If you keep this convention, you will be able to

easily list all the �les that are letters by entering ls *.letter. The �le-name Mary Jones.letter is then said

to be composed of two parts: the name, Mary Jones and the extension, letter.

Some extentions you may see are

.a Archive. lib*.a is a static library.

.alias X Window System font alias catalogue.

.avi Video format.

.au Audio format.

.awk awk program source �le.

.bib bibtex LATEXbibliography source �le.

.bmp Microsoft Bitmap �le image format.

.bz2 File compressed with the bzip2 compression program.

.cc, .cxx, .C, .cpp C++ program source code.

.cf, .cfg Con�guration �le or script.

18

CHAPTER 4. BASIC COMMANDS 4.3. WILDCARDS

.cgi Executable script that produces web page output.

.conf, .confif Con�guration �le.

.csh csh Shell script.

.c C program source code.

.db Database �le.

.dir X Window System font/other database directory.

.deb Debian package for the Debian distribution.

.diff Output of the di� program indicating the di�erence between �les or source trees.

.dvi Device independent �le. Formatted output of .tex LATEX �le.

.el Lisp program source.

.gif, .giff Gi� image �le.

.gz File compressed with the gzip compression program.

.htm, .html, .shtm, .html Hyper Text Markup Language. A web page of some sort.

.h C/C++ program header �le.

.i SWIG source, or C preprocessor output.

.in configure input �le.

.info Info pages read with the info command.

.jpg, .jpeg JPEG image �le.

.lj LaserJet �le. Suitable input to a HP laserjet printer.

.log Log �le of a system service. This �le grows with status messages of some system program.

.lsm Linux Software Map entry.

.lyx LyX word processor document.

.man Man page.

.mf Meta-Font font program source �le.

.pbm PBM image �le format.

.pcf PCF image �le | intermediate representation for fonts. X Window System font.

.pcx PCX image �le.

.pfb X Window System font �le.

.pdf Formatted document similar to postscript or dvi.

.php PHP program source code (used for web page design).

.pl Perl program source code.

.ps PostScript �le, for printing or viewing.

.py Python program source code.

.rpm RedHat Package Manager rpm �le.

.sgml Standard Generalized Markup Language. Used to create documents to be converted to many di�erent

formats.

19

4.3. WILDCARDS CHAPTER 4. BASIC COMMANDS

.sh sh Shell script.

.so Shared object �le. lib*.a is a Dynamically Linked Library4.

.spd Speedo X Window System font �le.

.tar tarred directory tree.

.tcl Tcl/Tk source code (programming language).

.texi, .texinfo Texinfo source. This is from what info pages are compiled.

.tex TEX or LATEX document. LATEX is for document processing and typesetting.

.tga TARGA image �le.

.tgz tarred and gzipped directory tree. Also a for the package Slackware distribution.

.tiff Ti� image �le.

.tfm LATEXfont metric �le.

.ttf True type font.

.txt Plain English text �le.

.xpm XPM image �le.

.y yacc source �le.

.Z File compressed with the compress compression program.

.zip File compressed with the pkzip (or pkzip DOS) compression program.

.1, .2 . . . Man page.

In addition, �les that have no extension and a capitalised descriptive name are usually plain English text and

meant for your reading. This will come bundled with packages and are for documentation purposes.

Some full �le names you may see are

AUTHORS List of people who contributed to or wrote a package.

ChangeLog List of developer changes made to a package.

COPYING Copyright (usually GPL) for a package.

INSTALL Instalation instructions.

README Help information to be read �rst, pertaining to the directory the README is in.

TODO List of future desired work to be done to package.

BUGS List of errata.

NEWS Info about new features and changes for the layman about this package.

THANKS List of contributors to a package.

VERSION Version information of the package.

There is also a way to restrict characters of a �le-name within certain ranges, like if you only want to list the

�les that begin with A through M, you can do ls [A-M]*. Here the brackets have a special meaning | they

match a single character like a ?, but only those given by the range. You can use this in a variety of ways, for

example [a-dJW-Y]* matches all �les beginning with a, b, c, d, J, W, X or Y, *[a-d]id matches all �les ending

with aid, bid, cid or did. This way of specifying a �le-name is called a glob expression. Glob expressions are

used in many di�erent contexts as you will see later.

4Executable program code shared by more than one program in the bin directory to save disk space and memory.

20

CHAPTER 4. BASIC COMMANDS 4.4. USAGE SUMMARIES

4.4 Usage summaries and the copy command

The command cp stands for copy and is used to make a duplicate of one �le or a number of �les. The format is

cp < file > < newfile >

cp < file > [< file > ...] < dir >

The above lines are called a usage summary. The < and > signs mean that you don't actually type out these

characters but replace <file> with a �le-name of your own. These are also sometime written in italics like, cp

�le new�le. <file> and <dir> are called a parameters. This is a common convention used to specify the usage

of a command. The [and] brackets are also not actually typed but mean that the contents between them are

optional. The ellipses ... mean that <file> can be be given repeatedly, and these also are never actually typed.

From now on you will be expected to substitute your own parameters by interpretting the usage summary. You

can see that the second of the above lines is actually just saying that one or more �le names can be listed with

a directory name last.

From the above usage summary it is obvious that there are two ways to use the cp command. If the the last

name is not a directory then cp will copy that �le and rename it to the �lename given. If the last name is a

directory then cp will copy all the �les listed into that directory.

The usage summary of the ls command would be as follows:

ls [- l, -- format =long] [- a, -- all] < file > < file > ...

where the comma indicates that either option is valid. Similarly with the passwd command:

passwd [< username >]

You should practice using the cp command now by moving some of your �les from place to place.

4.5 Manipulating directories

The cd command is used to take you to di�erent directories. Create a directory new with mkdir new. You could

create a directory one by doing cd new and then mkdir one, but there is a more direct way of doing this with

mkdir new/one. You can then change directly to the one directory with cd new/one. And similarly you can get

back to where you were with cd ../... In this way, the / is used to represent directories within directories. The

directory one is called a subdirectory of new.

The command pwd stands for present working directory (also called the current directory) and is used to

tell you what directory you are currently in. Entering pwd will give you some output like /home/<username>.

Experiment by changing to the root directory (with cd /) and then back into the directory /home/<username>

(with cd /home/<username>). The directory /home/<username> is called your home directory, and is where all

your personal �les are kept. It can be used at any time with the abbreviation ~. In other words, entering cd

/home/<username> is the same as entering cd ~. The process whereby a ~ is substituted for your home directory

is called tilde expansion.

To remove a �le use the command rm <filename>. To remove a directory use the command rmdir <dir>.

Practice using these two commands. Note that you cannot remove a directory unless it is empty. To remove

a directory as well as any contents it might contain, use the command rm -R <dir>. The -R option indicates

to dive into any subdirectories of <dir> and delete their contents. The process whereby a command dives

into subdirectories of subdirectories etc.is called recursion. -R stands for recursively. This is a very dangerous

command.

The cp command also takes the -R option, allowing it to copy whole directories. The mv command is used to

move �les and directories. It works just like cp, but deletes the source �les.

21

4.6. RELATIVE VS. ABSOLUTE PATHNAMES CHAPTER 4. BASIC COMMANDS

4.6 Relative vs. absolute pathnames

A command that requires a �le name can be given the �le in two ways. If you are in the same direc-

tory as the �le (i.e. the �le is in the current directory), then you can just enter the �le name on its own

(eg. cp my file new file). Otherwise, you can enter the full path name, like cp /home/jack/my file

/home/jack/new file. Very often administrators use the notation ./my file to be clear about the distinc-

tion, for instance: cp ./my file ./new file. The leading ./ makes it clear that both �les are relative to the

current directory.

4.7 System manual pages

(See Chapter 15 for a complete overview of all documentation on the system, and also how to print manual pages

out in a properly typeset format.)

The command man [<section>|-a] <command> is used to get help on a particular topic and stands for

manual. Every command on the entire system is documented in so named man pages5. Man pages are the

authoritative reference on how a command works because they are usually written by the very programmer who

created the command. Under Unix, any printed documentation should be considered as being second hand

information. Man pages however will often not contain the underlying concepts needed to understand in what

context a command is used. Hence it is not possible for a person to learn about Unix purely from man pages.

However once you have the necessary background for a command, then its man page becomes an indispensable

source of information and other introductory material may be discarded.

Now, man pages are divided into sections, numbered 1 through 9. Section 1 contains all man pages for system

commands like the ones you have been using. Sections 2-7 also exist, but contain information for programmers

and the like, which you will probably not have to refer to just yet. Section 8 contains pages speci�cally for system

administration commands. There are some additional sections labelled with letters; other than these, there are

no manual pages outside of the sections 1 through 9.

You should now use the man command to look up the manual pages for all the commands that you have

learned. Type man cp, man mv, man rm, man mkdir, man rmdir, man passwd, man cd, man pwd and of course

man man. Much of the information may be incomprehensible to you at this stage. Skim through the pages to get

an idea of how they are structured, and what headings they usually contain.

4.8 System info pages

info pages contain some excellent reference and tutorial information in hypertext linked format. Type info on

its own to go to the top level menu of the entire info hierarchy. You can also type info <command> for help on

many basic commands. Some packages will however not have info pages.

4.9 Some basic commands

You should practice using each of these commands.

bc A calculator program that handles arbitrary precision (very large) numbers. It is useful for doing any kind

of calculation on the command line. It use is left as an exercise.

cal [[0-12] 1--9999] Prints out a nicely formatted calender of the current month, or a speci�ed month, or

a speci�ed whole year. Try cal 1 for fun, and cal 9 1752, when the pope had a few days scrapped to

compensate for round-o� error in the Julian system.

cat <filename> [<filename> ...] Writes the contents of all the �les listed to the screen. cat can join a lot

of �les together with cat <filename> <filename> ... > <newfile>. <newfile> will be an end on end

concatination of all the �les given.

5In the past few years a new format of documentation has evolved called info. These are considered the modern way to document

commands, but most system documentation is still available only through man. There are very few packages that are not documented

in man however.

22

CHAPTER 4. BASIC COMMANDS 4.9. SOME BASIC COMMANDS

clear Erases all the text in the current terminal.

date Prints out the current date and time. (The command time though does something entirely di�erent.)

du <directory> Stands for disk usage, and prints out the amount of space occupied by a directory. It re-

curses into any subdirectories and can print only a summary with du -s <directory>. Also try du

--max-depth=1 /var, and du -x /, on a system with /usr and /home on separate partitions6.

df Stands for disk free. This tells you how much free space is left on your system. The available space usually

has the units of kilobytes (1024 bytes) (although on some other Unix systems this will be 512 bytes or 2048

bytes). The right most column tells the directory (in combination with any directories below that) under

which that much space is available.

dircmp Directory compare. This can be used to compare directories to see if changes have been made between

them. You will often want to see where two trees di�erent (eg. check for missing �les) possibly on di�erent

computers. Do a man dircmp. (This is a System 5 command and is not present on Linux. You can however

do directory comparisons with the Midnight Commander mc).

free Prints out available free memory. You will notice two listings: swap space and physical memory. These are

contigous as far as the user is concerned. The swap space is a continuation of your installed memory that

exists on disk. It is obviously slow to access, but provides the illusion of having much more RAM which

avoids ever running out of memory (which can be quite fatal).

echo Prints a message to the terminal. Try echo 'hello there', echo $[10*3+2], echo `$[10*3+2]'. echo

-e allows interpretation of certain backslash sequences, for example echo -e "na", which prints a bell, or

in other words, beeps the terminal. echo -n does the same without printing the trailing newline. In other

words it does not cause a wrap to the next line after the text is printed. echo -e -n "nb", will print a
back-space character only which will erase the last character printed.

expr <expression> Calculate the numerical expression expression. Most arithmetic operations that you are

used to will work. Try expr 5 + 10 '*' 2. Observe how mathematical precidence is obeyed (i.e. the * is

worked out before the +).

file <filename> This command prints out the type of data contained in a �le. file portrate.jpg will tell

you that portrate.jpg is a JPEG image data, JFIF standard. file detects an enormous amount of �le

types, accross every platform and computing standard.

less This is the GNU version of more, but has extra features. On your system the two commands may be the

same. With less, you can use the arrow keys to page up and down through the �le. You can do searches

by pressing / then typing in a word to search for and then pressing Enter. Found words will be highlighted,

and the text will be scrolled to the �rst found word.

more Displays a long �le by stopping at the end of each page. Do the following: ls -l /bin > bin.ls then

more bin.ls. The �rst command creates a �le with the contents of the output of ls. This will be a long

�le because the directory /bin has a great many entries. The second command views the �le. The space

bar can be used to page through the �le. When you get bored, just press q. you can also try ls -l /bin

| more which will do the same thing in one go.

sort <filename> Prints out a �le with lines sorted in alphabetical order. Create a �le called telephone with

each line containing a short telephone book entry. Then type sort telephone, or sort telephone | less

and see what happens. Sort takes many interesting options to sort in reverse (sort -r), to eliminate

duplicate entries (sort -u), ignore leading whitespace (sort -b), and so on. See the man page for details.

strings <filename> Prints out a binary �le, but strips any unreadable characters. Readable groups of char-

acters are placed on separate lines. If you have a binary �le that you think may contain something

interesting, but looks completely garbelled when viewed normally, use strings to sift out the interesting

stu�: try less /bin/cp and then try strings /bin/cp.

split ... Splits a �le into many seperate �les. This might have been used when a �le was too big to be copied

onto a oppy disk and needed to be split into, say, 360kB pieces. Its sister, csplit, can split �les along

speci�ed lines of text within the �le. The commands are seldom used but are actually very useful when

writing programs that manipulate text.

6See footnote on page 86

23

4.10. COMPRESSED FILES CHAPTER 4. BASIC COMMANDS

uname Prints out the name of the Unix operating system7you are currently using.

uniq <filename> Prints out a �le with duplicate lines deleted. The �le must �rst be sorted.

wc [-c] [-w] [-l] <filename> Counts the number characters/bytes (with -c), words (with -w) or lines (with

-l) in a �le.

whoami Prints out your login name.

4.10 Compressed �les

Files typically contain a lot of data they one can imagine might be represented with a smaller number of bytes.

Take for example the letter you typed out. The word `the' was probably repeated many times. You were

probably also using lowercase letters most of the time. The �le was by far not a completely random set of bytes

and repeatedly used spaces as well as using some letters more than others8. Because of this the �le can be

compressed to take up less space. Compression envolves representing the same data using a smaller number of

bytes, in such a way that the original data can be reconstructed exactly. This usually involves �nding patterns

in the data. The command to compress a �le is gzip <filename> which stands for GNU zip. gzip a �le in

your home directory and then do an ls to see what happened. Now use more to view the compressed �le. To

uncompress the �le you can use gzip -d <filename>. Now use more to view the �le again. There are many

�les on the system which are stored in compressed format. For example man pages are often stored compressed

and are uncompressed automatically when you read them.

You used the command cat previously to view a �le. You can use the command zcat to do the same thing

with a compressed �le. Gzip a �le and then type zcat <filename>. You will see that the contents of the �le

are written to the screen. Generally, when commands and �les have a z in them they have something to do with

compression | z stands for zip. You can use zcat <filename> | less, to view a compressed �le proper. You

can also use the command zless <filename>, which does the same as zcat <filename> | less. (Note that

your less may actually have the functionality of zless combined.)

A new addition to the arsenal is bzip2. This is a compression program very much like gzip, except that it

is slower and compresses 20%-30% better. It is useful for compressing �les that will be downloaded from the

Internet to reduce the transfer. Files that are compressed with bzip2 have an extension .bz2. Note that the

improvement in compression depends very much on the type of data being compressed. Sometimes there will

be negligable improvement at the expense of a huge speed penalty, while occasionality there is a substantial

reduction in size over gzip making it well worth it. Files that are frequently compressed and un-compressed

should never use bzip2.

4.11 Searching for �les

The command find can be used to search for �les. Change to the root directory, and enter find. It will spew

out all the �les it can see by recursively descending9 into all subdirectories. In other words, find, when executed

while in the root directory, will print out all the �les on the system. find will work for a long time if you enter

it as you have | press Ctrl-C to stop it.

Now change back to your home directory and type find again. You will see all your personal �les. There are

a number of options find can take to look for speci�c �les.

find -type d will show only directories and not the �les they contain.

find -type f will show only �les and not the directories that contain them, even though it will still descend

into all directories.

find -name <filename> will �nd only �les that have the name <filename>. For instance, find -name '*.c'.

Will �nd all �les that end in a .c extension (find -name *.c without the quote characters will not

7The brand of Unix | there are number of di�erent vendors and for each hardware platform.
8English text in fact contains, on average, only about 1.3 useful bits of data per byte.
9Goes into each subdirectory and all its subdirectories, and repeats the command find.

24

CHAPTER 4. BASIC COMMANDS 4.12. SEARCHING WITHIN FILES

work. You will see why later). find -name Mary Jones.letter will �nd the �le with the name

Mary Jones.letter.

find -size [[+|-]]<size> will �nd only �les that have a size larger (for +) or smaller (for -) than <size>

kilobytes, or the same as <size> kilobytes if the sign is not speci�ed.

find <directory> [<directory> ...] will start find in each of the directories given.

There are many more of these options for doing just about any type of search for a �le. See the find man page for

more details. find however has the de�ciency of actively reading directories to �nd �les. This is slow, especially

when you start from the root directory. An alternative command is locate <filename>. This searches through

a previously created database of all the �les on the system, and hence �nds �les instantaneously. Its counterpart

updatedb is used to update the database of �les used by locate. On some systems updatedb runs automatically

every day at 04h00.

4.12 Searching within �les

Very often one would like to search through a number of �les to �nd a particular word or phrase. An example

might be where a number of �les contain lists of telephone numbers with peoples names and addresses. The

command grep does a line by line search through a �le and prints out only those lines that contain a word that

you have speci�ed. grep has the command symmary,

grep [options] < pattern > < filename > [< filename > ...]

10

Do a grep for the word \the" to display all lines containing it: grep 'the' Mary Jones.letter. Now try

grep 'the' *.letter.

grep -n <pattern> <filename> will show the line number in the �le where the word was found.

grep -<num> <pattern> <filename> will print out <num> of the lines that came before and after each of the

lines in which the word was found.

grep -A <num> <pattern> <filename> will print out <num> of the lines that came After each of the lines in

which the word was found.

grep -B <num> <pattern> <filename> will print out <num> of the lines that came Before each of the lines in

which the word was found.

grep -v <pattern> <filename> will print out only those lines that do not contain the word you are searching

for11.

grep -i <pattern> <filename> does the same as an ordinary grep but is case insensitive.

4.13 Copying to MSDOS and Windows formatted oppy disks

There is a package called the mtools package that enables reading and writing to MSDOS/Windows oppy disks.

These are not standard Unix commands but are packaged with most Linux distributions. It supports long

�lename type oppy disks. Put an MSDOS disk in your A: drive. Try

10The words word, string or pattern are used synonomously in this context, basically meaning a short length of letters and/or

numbers that you are trying to �nd matches for. A pattern can also be a string with kinds of wildcards in it that match di�erent

characters, as we shall see later.
11You may think that the -v option is no longer doing the same kind of thing that grep is advertised to do: i.e. searching for

strings. In fact Unix commands often su�er from this | they have such versatility that their functionality often overlaps with those

of other commands. One actually never stops learning new and nifty ways of doing things hidden in the dark corners of man pages.

25

4.14. ARCHIVES AND BACKUPS CHAPTER 4. BASIC COMMANDS

mdir A:

touch myfile

mcopy myfile A:

mdir A:

Note that there is no such thing as an A: disk under Linux. Only the mtools package understand A: in order

to retain familiarity for MSDOS users. The complete list of commands is

mattrib mdeltree mlabel mrd

mbadblocks mdir minfo mren

mcd mdu mmd mshowfat

mcopy mformat mmount mtoolstest

5 mdel mkmanifest mmove mzip

mpartition xcopy

and can be gotten by typing info mtools. In general you can take any MSDOS command, put it into lower

case and add an m in front of it, to give you a command that you can use on Linux.

4.14 Archives and backups

One of the primary activities of a system administrator is to make backups. It is a essential never to underestimate

the volatility12 of information in a computer. Backups are therefore continually made of data. A backup is a

duplicate of your �les, that can be used as a replacement should any or all of the computer be destroyed. The

idea is that all of the data in a directory13 are stored in a seperate place | often compressed | and can be

retrieved in case of an emergency. When we want to store a number of �les in this way, it is useful to be able

to pack many �les into one �le so that we can perform operations on that single �le only. When many �les are

packed together into one, this packed �le is called an archive. File names of archives usually have an `a' in their

name somewhere. The most common being the extension .tar, which stands for tape archive.

To create an archive of a directory the tar command is used:

tar -c -f < filename > < directory >

Create a directory with a few �les in it and run the tar command to back it up. A �le of <filename> will

be created. Take careful note of any error messages that tar reports. List the �le and check that its size is

appropriate for the size of the directory you are archiving. You can also use the verify option (see the man page)

of the tar command to check the integrity of <filename>. Now remove the directory, and then restore it with

the extract option of the tar command:

tar -x -f < filename >

You should see your directory recreated with all its �les intact. A nice option to give to tar is -v. This will list

all the �les that are being added to or extracted from the archive as they are processed, and is useful to watch

the progress of archiving. It is obvious that you can call your archive anything you like, however the common

practice is to call it <directory>.tar, which makes it clear to all exactly what it is.

Once you have your tar �le, you would probably want to compress it with gzip. This will create a �le

<directory>.tar.gz, which is sometimes also called <directory>.tgz for brevity.

A second kind of archiving utility is cpio. cpio is actually more powerful than tar, but is considered to be

more cryptic to use. The principles of cpio are quite similar and its usage is left as an exercise.

4.15 The PATH where commands are searched for

When you type a command at the shell prompt, it has to be read o� disk out of one or other directory. On

Unix all such executable commands are located in one of about four directories. A �le is located in the directory
12Ability to evaporate or become chaotic.
13As usual, meaning a directory and all its subdirectories and all the �les in those subdirectories etc.

26

CHAPTER 4. BASIC COMMANDS 4.15. THE PATH

tree according to its type, and not according to what software package it belongs to. Hence, for example, a word

processor may have its actual executable stored in a directory with all other executables, while its font �les are

stored in a director with other fonts from all other packages.

The shell has a procedure for searching for executables when you type them in. If you type in a command

with slashes, like /bin/cp then it tries to run the named program: cp out of the /bin directory. If you just type

cp on its own, then it tries to �nd the cp command in each of the subdirectories of your PATH. To see what your

PATH is, just type

echo $PATH

You will see a colon separated list of four or more directories. Note that the current directory . is not

listed. It is very important that the current directory not be listed for security reasons. To execute a command

in the current directory, we hence always type ./<command>.

To append for example a new directory /opt/gnome/bin to your PATH, do

PATH =" $PATH :/ opt /gnome /bin "

export PATH

Linux supports the convenience of doing this in one line:

export PATH =" $PATH :/ opt /gnome /bin "

27

4.15. THE PATH CHAPTER 4. BASIC COMMANDS

28

Chapter 5

Regular Expressions

5.1 Basic regular expression exposition

A regular expression is a sequence of characters that forms a template used to search for strings1 within text.

To get an idea of when one would need to do this, consider the example where you have a list of names and

telephone numbers. If you would like to �nd a telephone number that contains a 3 in the second place and ends

with an 8, then regular expressions provide a way of doing these kinds of searches. Also consider where you

would like to send an email to �fty people, but replacing the word after the \Dear" with their own name to make

the letter more personal. Regular expressions allow for this type of searching and replacing. Many utilities use

the regular expression to give them greater power when manipulating text. The grep command is an example.

Previously you used the grep command to locate only simple letter sequences in text. Now we will use it to

search for regular expressions.

In the previous chapter you learned that the ? character can be used to signify that any character can take

its place. This is said to be a wildcard and works with �lenames. With regular expressions, the wildcard to use is

the . character. So you can use the command grep .3....8 <filename> to �nd the seven character telephone

number that you are looking for in the above example.

Regular expressions are used for line by line searches. For instance, if the seven characters were spread over

two lines (i.e. they had a line break in the middle), then grep wouldn't �nd them. In general a program that

uses regular expressions will consider searches one line at a time.

Here are some examples that will teach you the regular expression basics. We will use the grep command to

show the use of regular expressions (remember that the -w option matches whole words only). here the expression

itself will be enclosed in ' quotes for reasons which will be explained later.

grep -w 't[a-i]e' Matches the words tee, the and tie. The brackets have a special signi�cance. They mean

to match one characters that can be anything from a to i.

grep -w 't[i-z]e' Matches the words tie and toe.

grep -w 'cr[a-m]*t' Matches the words credit, craft, credit and cricket. The * means to match any

number of the previous character, which in this case is any character from a through u.

grep -w 'kr.*n' Matches the words kremlin and krypton, because the . matches any character and the *

means to match the dot any number of times.

egrep -w '(th|sh).*rt' Matches the words shirt, short, and thwart. The | means to match either the th

or the sh. egrep is just like grep but supports extended regular expressions which allow for the | feature2.

grep -w 'thr[aeiou]*t' Matches the words threat and throat. As you can see, a list of possible characters

may be placed inside the square brackets.

1Words, phrases, or just about sequence of characters.
2The | character often denotes a logical OR, meaning that either the thing on the left or the right of the | is applicable. This is

true of many programming languages.

29

5.2. THE FGREP COMMAND CHAPTER 5. REGULAR EXPRESSIONS

grep -w 'thr[^a-f]*t' Matches the words throughput and thrust. The ^ after the �rst bracket means to

match any character except the characters listed. Hence, for example, the word thrift is not matched

because it contains an f.

The above regular expressions all match whole words (because of the -w option). If the -w option was not present

they might match parts of words which would result in a far greater number of matches. Also note that although

the * means to match any number of characters, it also will match no characters as well, for example: t[a-i]*e

could actually match the letter sequence te. i.e a t and an e with zero characters between them.

Usually, you will use regular expression to search for whole lines that match, and sometimes you would like

to match a line that begins or ends with a certain string. The ^ character is used to specify the beginning of a

line and the $ character for the end of the line. For example ^The matches all lines that start with a The, while

hack$ matches all lines that end with hack, and '^ *The.*hack *$' matches all lines that begin with The and

end with hack, even if there is whitespace at the beginning or end of the line.

Because regular expression use certain characters in a special way (these are . n [] * + ?), these characters

cannot be used to match characters. This provides a severe limitation when trying to match, say, �le-names

which often use the . character. To match a . you can use the sequence n. which forces interpretation as

an actual . and not as a wildcard. Hence the regular expression myfile.txt might match the letter sequence

myfileqtxt or myfile.txt, but the regular expression myfilen.txt will match only myfile.txt.

Most special characters can be speci�ed by adding a n character before them, eg use n[for an actual [, a n$
for an actual $, a nn for and actual n, n+ for an actual +, and n? for an actual ?. (? and + are explained below.)

5.2 The fgrep command

fgrep is an alternative to grep. The di�erence is that while grep (the more commonly used command) matches

regular expressions, fgrep matches literal strings. In other words you can use fgrep where you would like to

search for an ordinary string that is not a regular expression, instead of preceding special characters with n.

5.3 Regular expression nf ng notation

x* matches zero to in�nite instances of a character x. You can specify other ranges of numbers of characters to

be matched with, for example xnf3,5ng, which will match at least three, but not more than �ve x's, that is xxx,

xxxx, or xxxx.

xnf4ng, can then be used to match 4 x's exactly and no more and no less. xnf7,ng will match seven or more

x's | the upper limit is omitted to mean that there is no maximum number of x's.

As in all the examples above, the x can be a range of characters (like [a-k]) just as well as a single charcter.

grep -w 'th[a-t]nf2,3ngt' Matches the words theft, thirst, threat, thrift and throat.

grep -w 'th[a-t]nf4,5ngt' Matches the words theorist, thicket and thinnest.

5.4 Extended regular expression + ? n< n> () | notation with egrep

There is an enhanced version of regular expressions that allows for a few more useful features. Where these

conict with existing notation, they are only available through the egrep command.

+ is analogous to nf1,ng, it does the same as *, but matches one or more character, instead of zero or more

characters.

? is analogous to nf1ng, it matches zero or one characters.

< > can surround a string to match only whole words.

() can surround several strings, seperated by |. This will match any of these strings.

30

CHAPTER 5. REGULAR EXPRESSIONS 5.5. REGULAR EXPRESSION SUB-EXRESSIONS

The following examples should make the last two notations clearer.

grep 'trot' Matches the words electrotherapist, betroth and so on, but

grep 'n<trotn>' Matches only the word trot.

egrep -w '(this|that|c[aeiou]*t)' Matches the words this, that, cot, coat, cat and cut.

5.5 Regular expression sub-exressions

These are covered in the chapter, Streams and sed - the stream editor.

31

5.5. REGULAR EXPRESSION SUB-EXRESSIONS CHAPTER 5. REGULAR EXPRESSIONS

32

Chapter 6

Shell Scripting

6.1 Introduction

This chapter will introduce your to the concept of computer programming. So far, you have entered commands

one at a time. Computer programming is merely the idea of getting a number of commands to be executed, that

in combination do some unique powerful function.

To see a number of commands get executed in sequence, create a �le with a .sh extension, into which you

will enter your commands. The .sh extension is not strictly necessary, but serves as a reminder that the �le

contains special text called a shell script. From now on, the word script will be used to describe and sequence of

commands placed in a text �le. Now do a,

chmod 0755 myfile .sh

which allow the �le to be run in the explained way.

Edit the �le. The �rst line should be as follows with no whitespace1.

#!/ bin /sh

which dictates that the following program is a shell script, meaning that it accepts the same sort of commands

that you have normally been typing at the prompt. Now enter a number of commands that you would like to be

executed. You can start with

echo " Hi there "

echo " what is your name ? (Type your name here and press Enter)"

read NM

echo " Hello $NM "

Now exit out of your editor and type ./myfile.sh. This will execute2 the �le. Note that typing ./myfile.sh

is no di�erent from typing any other command at the shell prompt. Your �le myfile.sh has in fact become a

new Unix command all of its own.

Now note what the read command is doing. It creates a pigeon-hole called NM, and then inserts text read

from tjhe keyboard into that pigeon hole. Thereafter, whenever the shell encounters NM, its contents are written

out instead of the letters NM (provided you write a $ in front of it). We say that NM is a variable because its

contents can vary.

You can use shell scripts like a calculator. Try,

echo "I will work out X*Y"

echo " Enter X"

read X

1Whitespace are tabs and spaces, and in some contexts, newline (end of line) characters.
2Cause the computer to read and act on your list of commands, also called running the program.

33

6.2. LOOPING | WHILE STATEMENT CHAPTER 6. SHELL SCRIPTING

echo " Enter Y"

5 read Y

echo "X*Y = $X*$Y = $[X*Y]"

The [and] mean that everything between must be evaluated3 as a numerical expression4. You can in fact

do a calculation at any time by typing it at the prompt:

echo $ [3*6+2*8+9]

5

6.2 Looping to repeat commands: the while statement

The shell reads each line in succession from top to bottom: this is called program ow. Now suppose you would

like a command to be executed more than once | you would like to alter the program ow so that the shell reads

particular commands repeatedly. The while command executes a sequence of commands many times. Here is

an example (-le stands for less than or equal):

N=1

while test " $N " - le "10"

do

echo " Number $N"

5 N=$[N+1]

done

The N=1 creates a variable called N and places the number 1 into it. The while command executes all the

commands between the do and the done repetatively until the \test" condition is no longer true (i.e until N is

greater than 10). The -le stands for -less-than-or-equal-to. Do a man test to see the other types of tests you

can do on variables. Also be aware of how N is replaced with a new value that becomes 1 greater with each

repetition of the while loop.

You should note here that each line is distinct command | the commands are newline-seperated. You can

also have more than one command on a line by seperating them with a semicolon as follows:

N=1 ; while test " $N " - le "10"; do echo " Number $N "; N=$[N+1] ; done

(Try counting down from 10 with -ge (-greater-than-or-equal).) It is easy to see that shell scripts are extremely

powerful, because any kind of command can be executed with conditions and loops.

6.3 Looping to repeat commands: the for statement

The for command also allows execution of commands multiple times. It works like this::

for i in cows sheep chickens pigs

do

echo " $i is a farm animal "

done

5 echo -e " but \ nGNUs are not farm animals "

The for command takes each string after the in, and executes the lines between do and donewith i substituted

for that string. The strings can be anything (even numbers) but are often �lenames.

The if command executes a number of commands if a condition is met (-gt stands for greater than, -lt stands

for less than).

3Substituted, worked-out, or reduced to some simpli�ed form.
4Sequence of numbers with +, -, * etc. between them.
5Note that the Bash shell that you are using allows such [] notation. On some Unix systems you will have to use the expr

command to get the same e�ect.

34

CHAPTER 6. SHELL SCRIPTING 6.4. LOOPING OVER GLOB EXPRESSIONS

X=10

Y=5

if test " $X " - gt " $Y " ; then

echo " $X is greater than $Y"

5 fi

The if command in its full form can contain as much as,

X=10

Y=5

if test " $X " - gt " $Y " ; then

echo " $X is greater than $Y"

5 elif test " $X " - lt " $Y " ; then

echo " $X is less than $Y"

else

echo " $X is equal to $Y"

fi

Now let us create a script that interprets its arguments. Create a new script called backup-lots.sh, con-

taining:

\#!/ bin /sh

for i in 0 1 2 3 4 5 6 7 8 9 ; do

cp $1 $1.BAK -$i

done

Now create a �le important data with anything in it and then run ./backup-lots.sh important data,

which will copy the �le ten times with ten di�erent extensions. As you can see the variable $1 has a special

meaning | it is the �rst argument on the command line. Now lets get a little bit more sophisticated (-e test if

the �le exists):

#!/ bin /sh

if test " $1 " = "" ; then

echo " Usage : backup -lots .sh < filename >"

exit

5 fi

for i in 0 1 2 3 4 5 6 7 8 9 ; do

NEW_FILE =$1.BAK -$i

if test -e $NEW_FILE ; then

echo " backup -lots .sh : *** warning *** $NEW_FILE "

10 echo " already exists - skipping "

else

cp $1 $NEW_FILE

fi

done

6.4 Looping over glob expressions

We know that the shell can expand �le names when given wildcards. For instance, we can type ls *.txt to list

all �les ending with .txt. This applies equally well in any situation: for instance:

#!/ bin /sh

for i in *. txt ; do

echo " found a file :" $i

done

The *.txt is expanded to all matching �les. These �les are searched for in the current directory. If

you include an absolute path then the shell will search in that directory:

35

6.5. THE CASE STATEMENT CHAPTER 6. SHELL SCRIPTING

#!/ bin /sh

for i in / usr /doc /*/*. txt ; do

echo " found a file :" $i

done

Which demonstrates the shells ability to search for matching �les and expand to an absolute path.

6.5 The case statement

The case statement can make a potentially complicated program very short. It is best explained with an example.

#!/ bin /sh

case $1 in

-{}- test |-t)

echo " you used the -{}- test option "

5 exit 0

;;

-{}- help |-h)

echo " Usage :"

echo " myprog .sh {[}-{}- test |-{}- help |-{}- version {]}"

10 exit 0

;;

-{}- version |-v)

echo " myprog .sh version 0.0.1"

exit 0

15 ;;

-*)

echo " No such option $1"

echo " Usage :"

echo " myprog .sh {[}-{}- test |-{}- help |-{}- version {]}"

20 exit 1

;;

esac

echo " You typed \" $1 \" on the command line "

Above you can see that we are trying to process the �rst argument to a program. It can be one of several

options, so using if statements will come to a long program. The case statement allows us to specify several

possible statement blocks depending on the value of a variable. Note how each statement block is seperated by

;;. The strings before the) are glob expression matches. The �rst successful match causes that block to be

executed. The | symbol allows us to enter several possible glob expressions.

6.6 Using functions: the function keyword

So far our programs execute mostly from top to bottom. Often, code needs to be repeated, but it is considered

bad programming practice to repeat groups of statements that have the same functionality. Function de�nitions

provide a way to group statement blocks into one. A function groups a list of commands and assigns it a name.

For example:

#!/ bin /sh

function usage ()

{

5 echo " Usage :"

echo " myprog .sh [-- test |-- help |-- version]"

}

case $1 in

36

CHAPTER 6. SHELL SCRIPTING 6.7. COMMAND LINE ARGS | SHIFT KEYWORD

10 -- test |-t)

echo " you used the -- test option "

exit 0

;;

-- help |-h)

15 usage

;;

-- version |-v)

echo " myprog .sh version 0.0.2"

exit 0

20 ;;

-*)

echo " Error : no such option $1"

usage

exit 1

25 ;;

esac

echo " You typed \" $1 \" on the command line "

Whereever the usage keyword appears, it is e�ectively substituted for the two lines inside the f and g. There

are obvious advantages to this approach: if you would like to change the program usage description, you only

need to change it in one place in the code. Good programs use functions so liberally that they never have more

than 50 lines of program code in a row.

6.7 Properly processing command line arguments: the shift key-

word

Most programs we have seen can take many command-line arguments in any order. Here is how we can make

our own shell scripts with this functionality. The command-line arguments can be reached with $1, $2, etc. the

script,

#!/ bin /sh

echo " The first argument is : $1 , second argument is : $2 , third argument is : $3"

Can be run with,

myfile .sh dogs cats birds

and prints,

The first argument is : dogs , second argument is : cats , third argument is : birds

Now we need to loop through each argument and decide what to do with it. A script like

for i in $1 $2 $3 $4 ; do

< statments >

done

doesn't give us much exibilty. The shift keyword is meant to make things easier. It shifts up all the

arguments by one place so that $1 gets the value of $2, $2 gets the value of $3 and so on. (!= tests if the "$1"

is not equal to "", i.e. if it is empty and is hence past the last argument.) Try:

while test " $1 " != "" ; do

echo $1

shift

done

37

6.8. COMMAND LINE ARGS | $@ AND $0 CHAPTER 6. SHELL SCRIPTING

and run the program with lots of arguments. Now we can put any sort of condition statements within the

loop to process the arguments in turn:

#!/ bin /sh

function usage ()

{

5 echo " Usage :"

echo " myprog .sh [-- test |-- help |-- version] [-- echo < text >]"

}

while test " $1 " != "" ; do

10 case $1 in

-- echo |-e)

echo " $2"

shift

;;

15 -- test |-t)

echo " you used the -- test option "

;;

-- help |-h)

usage

20 exit 0

;;

-- version |-v)

echo " myprog .sh version 0.0.3"

exit 0

25 ;;

-*)

echo " Error : no such option $1"

usage

exit 1

30 ;;

esac

shift

done

myprog.sh can now run with multiple arguments on the command-line.

6.8 More on command-line arguments: $@ and $0

Whereas $1, $2, $3 etc.expand to the individual arguments passed to the program, $@ expands to all arguments.

This is useful for passing all remaining arguments onto a second command. For instance,

if test " $1 " = "-- special " ;

then

shift

myprog2 .sh $@

5 fi

$0 means the name of the program itself and not any command line argument. It is the command used to

envoke the current program. In the above cases it will be ./myprog.sh. Note that $0 is immune to shift's.

6.9 Single forward quote notation

Single forward quotes ' protect the enclosed text from the shell. In other words, you can place any odd

characters inside forward quotes and the shell will treat them literally and reproduce your text exactly. For

instance you may want to echo an actual $ to the screen to produce an output like costs $1000. You can use

echo 'costs $1000' instead of echo "costs $1000".

38

CHAPTER 6. SHELL SCRIPTING 6.10. DOUBLE QUOTE NOTATION

6.10 Double quote notation

Double quotes " have the oposite sence to single quotes. They allow all shell interpretations to

take place inside them. The reason they are used at all is only to group text containing white-space

into a single word, becuase the shell will usually break up text along whitespace boundaries. Try

for i in "henry john mary sue" ; do echo "$i is a person" ; done, compared to for

i in henry john mary sue ; do echo $i is a person ; done.

6.11 Backward quote substitution

Backward quote ` have a special meaning to the shell. When a command is inside backward quotes it means

that the command should be run and its output substituted in place of the backquotes. Take for example the

cat command. Create a small �le to be catted with only the text daisy inside it. Create a shell script

X=` cat to_be_catted `

echo $X

The value of X is set to the output of the cat command, which in this case is the word daisy. The is a

powerful tool. Consider the expr command:

X=` expr 100 + 50 '*' 3`

echo $X

Hence we can use expr and backquotes to do mathematics inside our shell script. Here is function to calculate

factorials. Note how we enclose the * in forward quotes. This is to prevent the shell from thinking that we want

it to expand the * into matching �le-names:

function factorial ()

{

N=$1

A=1

5 while test $N - gt 0 ; do

A=` expr $A '*' $N`

N=` expr $N - 1`

done

echo $A

10 }

We can see that the square braces used further above can actually suÆce for most of the times where we would

like to use expr. (However $[] notation is an extension of the GNU shells, and is not a standard feature on all

varients of Unix.) We can now run factorial 20 and see the output. If we would like to assign the output to

a variable, this can be done with, X=`factorial 20`.

39

6.11. BACKWARD QUOTE SUBSTITUTION CHAPTER 6. SHELL SCRIPTING

40

Chapter 7

Streams and sed | the stream editor

7.1 Introduction

1The commands grep, echo, df and so on print some output to the screen. In fact, what is happening on a lower

level is that they are printing characters one by one into a theoretical data stream (also called a pipe) called the

stdout pipe. The shell itself performs the action of reading those characters one by one and displaying them on

the screen. The word pipe itself means exactly that: a program places data in the one end of a funnel while

another program reads that data from the other end. The reason for pipes is to allow two seperate programs to

perform simple communications with each other. In this case, the program is merely communicating with the

shell in order to display some output.

The same is true with the cat command explained previously. This command run with no arguments reads

from the stdin pipe. By default this is the keyboard. One further pipe is the stderr pipe which a program writes

error messages to. It is not possible to see whether a program message is caused by the program writing to its

stderr or stdout pipe, because usually both are directed to the screen. Good programs however always write to

the appropriate pipes to allow output to be specially seperated for diagnostic purposes if need be.

7.2 Tutorial

Create a text �le with lots of lines that contain the word GNU and one line that contains the word GNU as

well the word Linux. Then do grep GNU myfile.txt. The result is printed to stdout as usual. Now try

grep GNU myfile.txt > gnu lines.txt. What is happening here is that the output of the grep command is

being redirected into a �le. The > gnu lines.txt tells the shell to create a new �le gnu lines.txt and �ll it

with any output from stdout, instead of displaying the output as it usually does. If the �le already exists, it will

be truncated2.

Now suppose you want to append further output to this �le. Using >> instead of > will not truncate the

�le but append any output to it. Try this: echo "morestuff" >> gnu lines.txt. Then view the contents of

gnu lines.txt.

7.3 Piping using | notation

The real power of pipes is when one program can read from the output of another program. Consider the grep

command which reads from stdin when given no arguments: run grep with one argument on the command line:

grep GNU

A line without that word in it

1The ability to use pipes is one of the powers of Unix. This is one of the principle de�ciancies of some non-Unix systems. Pipes

used on the command line as explained in this section are a neat trick, but Pipes used inside C programs enormously simplify

program interaction. Without pipes, huge amounts of complex and buggy code usually needs to be written to perform simple tasks.

It is hoped that these ideas will give the reader an idea of why Unix is such a ubiquitous and enduring standard.
2Shortened to zero length

41

7.4. A COMPLEX PIPING EXAMPLE CHAPTER 7. STREAMS AND SED | THE STREAM EDITOR

Another line without that word in it

A line with the word GNU in it

5 A line with the word GNU in it

I have the idea now

^C

#

grep's default is to read from stdin when no �les are given. As you can see, it is doing its usual work of

printing out lines that have the word GNU in them. Hence lines containing GNU will be printed twice - as you type

them in and again when grep reads them and decides that they contain GNU.

Now try grep GNU myfile.txt | grep Linux. The �rst grep outputs all lines with the word GNU in them

to stdout. The | tells that all stdout is to be typed as stdin (us we just did above) into the next command, which

is also a grep command. The second grep command scans that data for lines with the word Linux in them.

grep is often used this way as a �lter3 and be used multiple times eg. grep L myfile.txt | grep i | grep n

| grep u | grep x.

7.4 A complex piping example

In a previous chapter we used grep on a dictionary to demonstrate regular expressions. This is how a dictionary

of words can be created:

cat / usr /lib / ispell / english .hash | strings | tr 'A-Z' ' a-z' \

| grep '^[a-z]' | sort -u > mydict

4 The �le english.hash contains the Unix dictionary normally used for spell checking. With a bit of �ltering

you can create a dictionary that will make solving crossword puzzles a breese. First we use the command strings

explained previously to extract readable bits of text. Here we are using its alternate mode of operation where it

reads from stdin when no �les are speci�ed on its command-line. The command tr (abbreviated from translate

see the tr man page.) then converts upper to lower case. The grep command then �lters out lines that do not

start with a letter. Finally the sort command sorts the words in alphabetical order. The -u option stands for

unique, and speci�es that there should be not duplicate lines of text. Now try less mydict.

7.5 Redirecting streams with >&

Try the command ls nofile.txt > A. ls should give an error message if the �le doesn't exist. The error

message is however displayed, and not written into the �le A. This is because ls has written its error message

to stderr while > has only redirected stdout. The way to get both stdout and stderr to both go to the same �le

is to use a redirection operator. As far as the shell is concerned, stdout is called 1 and stderr is called 2, and

commands can be appended with a redirection like 2>&1 to dictate that stderr is to be mixed into the output of

stdout. The actual words stderr and stdout are only used in C programming. Try the following:

touch existing_file

rm -f non - existing_file

ls existing_file non - existing_file

ls will output two lines: a line containing a listing for the �le existing file and a line containing an error

message to explain that the �le non-existing file does not exist. The error message would have been written

to stderr or �le descriptor number 2, and the remaining line would have been written to stdout or �le descriptor

number 1. Next we try

ls existing_file non - existing_file 2> A

cat A

3Something that screens data.
4A backslash n as the last character on a line indicates that the line is to be continued. You can leave out the nbut then you must

leave out the newline as well.

42

CHAPTER 7. STREAMS AND SED | THE STREAM EDITOR 7.6. USING SED TO EDIT STREAMS

Now A contains the error message, while the remaining output came to the screen. Now try,

ls existing_file non - existing_file 1> A

cat A

The notation 1>A is the same as >A because the shell assumes that you are referring to �le descriptor 1 when

you don't specify any. Now A contains the stdout output, while the error message has been redirected to the

screen. Now try,

ls existing_file non - existing_file 1> A 2>&1

cat A

Now A contains both the error message and the normal output. The >& is called a redirection operator. x>&y

tells to write pipe x into pipe y. Redirection is speci�ed from right too left on the command line. Hence

the above command means to mix stderr into stdout and then to redirect stdout to the �le A. Finally,

ls existing_file non - existing_file 2> A 1>&2

cat A

We notice that this has the same e�ect, except that here we are doing the reverse: redirecting stdout into

stderr, and then redirecting stderr into a �le A. To see what happens if we redirect in reverse order, we can try,

ls existing_file non - existing_file 2>&1 1> A

cat A

which means to redirect stdout into a �le A, and then to redirect stderr into stdout. This will therefore not

mix stderr and stdout because the redirection to A came �rst.

7.6 Using sed to edit streams

ed used to be the standard text ed itor for Unix. It is cryptic to use, but is compact and programmable. sed

stands for stream editor, and is the only incarnation of ed that is commonly used today. sed allows editing of �les

non-interactively. In the way that grep can search for words and �lter lines of text; sed can do search-replace

operations and insert and delete lines into text �les. sed is one of those programs with no man page to speek

of. Do info sed to see sed's comprehensive info pages with examples. The most common usage of sed is to

replace words in a stream with alternative words. sed reads from stdin and writes to stdout. Like grep, it is

line bu�ered which means that it reads one line in at a time and then writes that line out again after performing

whatever editing operations. Replacements are typically done with:

cat < file > | sed -e 's/< search -regexp >/< replace -text >/< option >' \

> < resultfile >

where search-regexp is a regular expression, replace-text is the text you would like to replace each found

occurance with, and option is nothing or g, which means to replace every occurance in the same line (usually

sed just replaces the �rst occurance of the regular expression in each line). (There are other options, see the sed

info page.) For demonstration, type

sed -e 's/e/E/g'

and type out a few lines of english text.

sed is actually an extremely powerful and important system of editing. A complete overview will be done

later. Here we will concentrate on searching and replacing regular expressions.

43

7.7. REGULAR EXPRESSION SUB-EXRESSIONSCHAPTER 7. STREAMS AND SED | THE STREAM EDITOR

7.7 Regular expression sub-exressions

The section explains how to do the apparently complex task of moving text around within lines. Consider for

example the output of ls: now say you want to automatically strip out only the size column | sed can do this

sort of editing using the special n(n) notation to group parts of the regular expression together. Consider the

following example:

sed -e 's /\(\<[^]*\>\)\([]*\)\(\<[^]*\>\)/\3\2\1/ g'

Here sed is searching for the expression n<.*n>[]*n<.*n>. From the chapter on regular expressions, we can

see that it matches a whole word, an arbitrary amount of whitespace, and then another whole word. The n(n)
groups these three so that they can be referred to in replace-text. Each part of the regular expression inside

n(n) is called a sub-expression of the regular expresion. Each sub-expression is numbered | namely n1, n2 etc.
Hence n1 in replace-text is the �rst n<[^]*n>, n2 is []*, and �nally, n3 is the second n<[^]*n>. Now test to

see what happens when you run this:

sed -e 's /\(\<[^]*\>\)\([]*\)\(\<[^]*\>\)/\3\2\1/ g'

GNU Linux is cool

Linux GNU cool is

To return to our ls example (note that this is just an example, to count �le sizes you should rather use the

du command), think about if we would like to sum the bytes sizes of all the �les in a directory:

expr 0 ` ls -l | grep '^-' | \

sed 's /^\([^]*[]*\)\\{4,4\\}\([0-9]*\).* $ / + \2/'`

We know that ls -l output lines start with - for ordinary �les. So we use grep to strip lines not starting

with -. If we do an ls -l, we see the output is divided into four columns of stu� we are not interested in, and

then a number indicating the size of the �le. A column (or �eld) can be described by the regular expression

[^]*[]*, i.e. a length of text with no whitespace, followed by a length of whitespace. There are four of these,

so we bracket it with n(n), and then use the nf ng notation to indicate that we want exactly 4. After that

comes our number [0-9]*, and then any trailing characters which we are not interested in, .*$. Notice here

that we have neglected to use n< n> notation to indicate whole words. This is because sed tries to match the

maximum number of characters legally allowed, and in the situation we have here, has exactly the same e�ect.

If you haven't yet �gured it out, we are trying to get that column of bytes sizes into the format like,

+ 438

+ 1525

+ 76

+ 92146

. . . so that expr can understand it. Hence we replace each line with sub-expression n2 and a leading + sign.

Backquotes give the output of this to expr, which sums them studiously, ignoring any newline characters as

though the summation were typed in on a single line. There is one minor problem here: the �rst line contains

a + with nothing before it, which will cause expr to complain. To get around this, we can just add a 0 to the

expression, so that it becomes 0 +

44

Chapter 8

Processes and environment variables

8.1 Introduction

On Unix, when you run a program (like any of the shell commands you have been using) the actual computer

instructions are read out of a �le on disk out of one of the /bin/ directories and placed in RAM 1. The program

then gets executed in memory and becomes a process. A process is some command/program/shell-script that is

being run (or executed) in memory. When the process is �nished running, it is removed from memory. There

are usually about 50 processes running simultaneously at any one time on a system with one person logged in.

The CPU 2 hops between each of them to give a share of its execution time3.Each process is given a process

number called the PID (Process ID). Besides the memory actually occupied by the process, the process itself

ceases addition memory for its operations.

In the same way that a �le is owned by a particular user and group, a process also has an owner | usually the

person who ran the program. Whenever a process tries to access a �le, its ownerships is compared to that of the

�le to decide if the access is permissable. Because all devices are �les, the only way a process can do anything is

through a �le, and hence �le permission restrictions are the only kind of restrictions there need ever be on Unix.

This is how Unix security works.

8.2 Tutorial

Login on a terminal and type the command ps. You should get some output like:

PID TTY STAT TIME COMMAND

5995 2 S 0:00 / bin /login -- myname

5999 2 S 0:00 - bash

6030 2 R 0:00 ps

ps with no options shows 3 processes to be running. These are the only three processes visible to you as a

user, although there are other system processes not belonging to you. The �rst process was the program that

logged you in by displaying the login prompt and requesting a password. It then ran a second process call bash,

the Bourne Again Shell4 where you have been typing commands. Finally you ran ps, hence it must have found

itself when it checked for what processed were running, but then exited immediately afterward.

8.2.1 Controlling jobs

The shell has many facilities for controlling and executing processes | this is called job control. Create a small

script called proc.sh:

1Random Access Memory | the memory chips on your motherboard.
2Central Processing Unit | the actual 386/486 or whatever chip that sits on your motherboard.
3Time given to carry out the instructions of a particular program. Note this is in contrast to Windows or DOS where the program

itself has to allow the others a share of the CPU: under Unix, the process has no say in the matter.
4The Bourne shell was the original Unix shell

45

8.2. TUTORIAL CHAPTER 8. PROCESSES AND ENVIRONMENT VARIABLES

#!/ bin /sh

echo " proc .sh : is running "

sleep 1000

Run the script with chmod 0755 proc.sh and then ./proc.sh. The shell will block waiting for the process

to exit. Now hit ^Z5. This will stop the process. Now do a ps again. You will see your script listed. However it

is not presently running because it is in the condition of being stopped. Type bg standing for background. The

script will now be un-stopped and run in the background. You can now run other processes in the mean time.

Type fg and the script will return to the foreground. You can then type ^C to interrupt the process.

Creating background processes

Create a program that does something a little more interesting:

#!/ bin /sh

echo " proc .sh : is running "

while true ; do

echo -e '\ a'

5 sleep 2

done

Now perform the ^Z, bg, fg and ^C operations from before. To put a process immediately into the background,

you can use:

./ proc .sh &

The JOB CONTROL section of the bash man page (bash(1)) looks like this:

Job control refers to the ability to selectively stop (suspend) the execution of processes and continue

(resume) their execution at a later point. A user typically employs this facility via an interactive

interface supplied jointly by the system's terminal driver and bash.

The shell associates a job with each pipeline. It keeps a table of currently executing jobs, which

may be listed with the jobs command. When bash starts a job asynchronously (in the background),

it prints a line that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the pipeline

associated with this job is 25647. All of the processes in a single pipeline are members of the same

job. Bash uses the job abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the system maintains the notion

of a current terminal process group ID. Members of this process group (processes whose process group

ID is equal to the current terminal process group ID) receive keyboard-generated signals such as SIG-

INT. These processes are said to be in the foreground. Background processes are those whose process

group ID di�ers from the terminal's; such processes are immune to keyboard-generated signals. Only

foreground processes are allowed to read from or write to the terminal. Background processes which

attempt to read from (write to) the terminal are sent a SIGTTIN (SIGTTOU) signal by the ter-

minal driver, which, unless caught, suspends the process.

If the operating system on which bash is running supports job control, bash allows you to use

it. Typing the suspend character (typically ^Z, Control-Z) while a process is running causes that

process to be stopped and returns you to bash. Typing the delayed suspend character (typically

^Y, Control-Y) causes the process to be stopped when it attempts to read input from the terminal,

5^ means to hold down the Ctrl key and press the Z key.

46

CHAPTER 8. PROCESSES AND ENVIRONMENT VARIABLES 8.2. TUTORIAL

and control to be returned to bash. You may then manipulate the state of this job, using the bg

command to continue it in the background, the fg command to continue it in the foreground, or the

kill command to kill it. A ^Z takes e�ect immediately, and has the additional side e�ect of causing

pending output and typeahead to be discarded.

There are a number of ways to refer to a job in the shell. The character % introduces a job name.

Job number n may be referred to as %n. A job may also be referred to using a pre�x of the name

used to start it, or using a substring that appears in its command line. For example, %ce refers to a

stopped ce job. If a pre�x matches more than one job, bash reports an error. Using %?ce, on the

other hand, refers to any job containing the string ce in its command line. If the substring matches

more than one job, bash reports an error. The symbols %% and %+ refer to the shell's notion of

the current job, which is the last job stopped while it was in the foreground. The previous job may

be referenced using %-. In output pertaining to jobs (e.g., the output of the jobs command), the

current job is always agged with a +, and the previous job with a -.

Simply naming a job can be used to bring it into the foreground: %1 is a synonym for \fg %1",

bringing job 1 from the background into the foreground. Similarly, \%1 &" resumes job 1 in the

background, equivalent to \bg %1".

The shell learns immediately whenever a job changes state. Normally, bash waits until it is about to

print a prompt before reporting changes in a job's status so as to not interrupt any other output. If

the -b option to the set builtin command is set, bash reports such changes immediately. (See also

the description of notify variable under Shell Variables above.)

If you attempt to exit bash while jobs are stopped, the shell prints a message warning you. You

may then use the jobs command to inspect their status. If you do this, or try to exit again immedi-

ately, you are not warned again, and the stopped jobs are terminated.

8.2.2 killing a process, sending a process a signal

To terminate a process, use the kill command:

kill < PID >

The kill command actually sends a signal to the process causing it to execute some function. In some cases,

the developers would not have bothered to account for this signal and some default behaviour happens.

To send a signal to a process you can name the signal on the command-line or use its numerical equivalent:

kill - SIGTERM 12345

or

kill -15 12345

Which is the signal that kill normally sends: the termination signal.

To unconditionally terminate a process:

kill - SIGKILL 12345

or

kill -9 12345

Which should only be used as a last resort.

It is cumbersome to have to constantly look up the PID of a process. Hence the GNU utilities have a command

killall which sends a signal to all processes of the same name:

47

8.2. TUTORIAL CHAPTER 8. PROCESSES AND ENVIRONMENT VARIABLES

killall -< signal > < process_name >

This is useful when you are sure that there is only one of a process running, either because there is no one

else logged in on the system, or because you are not logged in as super user.

The list of signals can be gotten from signal(7).

8.2.3 List of comman signals

SIGHUP Hang up. If the terminal becomes disconnected from a process, this signal is sent automatically to the

process. Sending a process this signal often causes it to reread its con�guration �les, so it is useful instead

of restarting the process. Always check the man page to see if a process has this behaviour.

SIGINT Interrupt from keyboard. Issued if you press ^C.

SIGQUIT Quit from keyboard. Issued if you press ^D.

SIGFPE Floating Point Exception. Issued automatically to a program performing some kind of illegal mathemat-

ical operation.

SIGKILL Kill Signal. This is one of the signals that can never be caught by a process. If a process gets this signal

it has to quit immediately and will not perform any clean-up operations (like closing �les or removing

temporary �les). You can send a process a SIGKILL signal if there is no other means of destroying it.

SIGSEGV Segmentation Violation. Issued automatically when a process tries to access memory outside of its

allowable address space. I.e. equivalent to a Fatal Exception under Windows. Note that programs with

bugs or programs in the process of being developed often get these. A program receiving a SIGSEGV however

can never cause the rest of the system to be compromised. If the kernel itself were to receive such an error,

it would cause the system to come down, but such is extremely rare.

SIGPIPE Pipe died. A program was writing to a pipe, the other end of which is no longer available.

SIGTERM Terminate. Cause the program to quit gracefully

8.2.4 Environment 's of processes

Each process that runs does so with the knowledge of several var=value text pairs. All this means is that a

process can look up the value of some variable that it may have inherited from its parent process. The complete

list of these text pairs is called the environment of the process, and each var is called an environment variable.

Each process has its own environment, which is copied from the parent processes environment.

After you have logged in and have a shell prompt, the process you are using (the shell itself) is just like any

other process with an environment with environment variables. To get a complete list of these variables, just

type:

set

This is useful to �nd the value of an environment variable whose name you are unsure of:

set | grep < regexp >

Try set | grep PATH to see the PATH environment variable discussed previously.

The purpose of an environment is just to have an alternative way of passing parameters to a program (in

addition to command-line arguments). The di�erence is that an environment is inherited from one process to

the next: i.e. a shell might have certain variable set (like the PATH) and may run a �le manager which may run a

word-processor. The word-processor inherited its environment from �le-manager which inherited its environment

from the shell.

Try

48

CHAPTER 8. PROCESSES AND ENVIRONMENT VARIABLES 8.2. TUTORIAL

X=" Hi there !"

echo $X

You have set a variable. But now run

bash

You have now run a new process which is a child of the process you were just in. Type

echo $X

You will see that X is not set. This is because the variable was not exported as an environment variable, and

hence was not inherited. Now type

exit

Which returns you to the parent process. Then

export X

bash

echo $X

You will see that the new bash now knows about X.

Above we are setting an arbitrary variable for our own use. bash (and many other programs) automatically

set many of their own environment variables. The bash man page lists these (when it talks about unsetting

a variable, it means using the command unset <variable>). You may not understand some of these at the

moment, but they are included here as a complete reference for later:

Shell Variables

The following variables are set by the shell:

PPID The process ID of the shell's parent.

PWD The current working directory as set by the cd command.

OLDPWD The previous working directory as set by the cd command.

REPLY Set to the line of input read by the read builtin command when no arguments are supplied.

UID Expands to the user ID of the current user, initialized at shell startup.

EUID Expands to the e�ective user ID of the current user, initialized at shell startup.

BASH Expands to the full pathname used to invoke this instance of bash.

BASH VERSION Expands to the version number of this instance of bash.

SHLVL Incremented by one each time an instance of bash is started.

RANDOM Each time this parameter is referenced, a random integer is generated. The sequence

of random numbers may be initialized by assigning a value to RANDOM. If RANDOM is

unset, it loses its special properties, even if it is subsequently reset.

SECONDS Each time this parameter is referenced, the number of seconds since shell invocation is

returned. If a value is assigned to SECONDS. the value returned upon subsequent references

is the number of seconds since the assignment plus the value assigned. If SECONDS is unset,

it loses its special properties, even if it is subsequently reset.

LINENO Each time this parameter is referenced, the shell substitutes a decimal number representing

the current sequential line number (starting with 1) within a script or function. When not in a

script or function, the value substituted is not guaranteed to be meaningful. When in a function,

the value is not the number of the source line that the command appears on (that information

has been lost by the time the function is executed), but is an approximation of the number of

simple commands executed in the current function. If LINENO is unset, it loses its special

properties, even if it is subsequently reset.

49

8.2. TUTORIAL CHAPTER 8. PROCESSES AND ENVIRONMENT VARIABLES

HISTCMD The history number, or index in the history list, of the current command. If

HISTCMD is unset, it loses its special properties, even if it is subsequently reset.

OPTARG The value of the last option argument processed by the getopts builtin command (see

SHELL BUILTIN COMMANDS below).

OPTIND The index of the next argument to be processed by the getopts builtin command (see

SHELL BUILTIN COMMANDS below).

HOSTTYPE Automatically set to a string that uniquely describes the type of machine on which

bash is executing. The default is system-dependent.

OSTYPE Automatically set to a string that describes the operating system on which bash is exe-

cuting. The default is system-dependent.

There are also many variables that bash uses which may be set by the user. These are:

The following variables are used by the shell. In some cases, bash assigns a default value to a variable;

these cases are noted below.

IFS The Internal Field Separator that is used for word splitting after expansion and to split lines

into words with the read builtin command. The default value is \<space><tab><newline>".

PATH The search path for commands. It is a colon-separated list of directories in which the

shell looks for commands (see COMMAND EXECUTION below). The default path is

system-dependent, and is set by the administrator who installs bash. A common value is

\/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin:.".

HOME The home directory of the current user; the default argument for the cd builtin command.

CDPATH The search path for the cd command. This is a colon-separated list of directories in

which the shell looks for destination directories speci�ed by the cd command. A sample value

is ``.:~:/usr''.

ENV If this parameter is set when bash is executing a shell script, its value is interpreted as

a �lename containing commands to initialize the shell, as in .bashrc. The value of ENV is

subjected to parameter expansion, command substitution, and arithmetic expansion before being

interpreted as a pathname. PATH is not used to search for the resultant pathname.

MAIL If this parameter is set to a �lename and the MAILPATH variable is not set, bash informs

the user of the arrival of mail in the speci�ed �le.

MAILCHECK Speci�es how often (in seconds) bash checks for mail. The default is 60 seconds.

When it is time to check for mail, the shell does so before prompting. If this variable is unset,

the shell disables mail checking.

MAILPATH A colon-separated list of pathnames to be checked for mail. The message to be printed

may be speci�ed by separating the pathname from the message with a `?'. $ stands for the name

of the current mail�le. Example:

MAILPATH='/usr/spool/mail/bfox?"You have mail":~/shell-mail?"$_ has mail!"'

Bash supplies a default value for this variable, but the location of the user mail �les that it uses

is system dependent (e.g., /usr/spool/mail/$USER).

MAIL WARNING If set, and a �le that bash is checking for mail has been accessed since the last

time it was checked, the message \The mail in mail�le has been read" is printed.

PS1 The value of this parameter is expanded (see PROMPTING below) and used as the primary

prompt string. The default value is \bashn$ ".

PS2 The value of this parameter is expanded and used as the secondary prompt string. The default

is \> ".

PS3 The value of this parameter is used as the prompt for the select command (see SHELL GRAM-

MAR above).

PS4 The value of this parameter is expanded and the value is printed before each command bash

displays during an execution trace. The �rst character of PS4 is replicated multiple times, as

necessary, to indicate multiple levels of indirection. The default is \+ ".

HISTSIZE The number of commands to remember in the command history (seeHISTORY below).

The default value is 500.

50

CHAPTER 8. PROCESSES AND ENVIRONMENT VARIABLES 8.2. TUTORIAL

HISTFILE The name of the �le in which command history is saved. (See HISTORY below.) The

default value is ~/.bash history. If unset, the command history is not saved when an interactive

shell exits.

HISTFILESIZE The maximum number of lines contained in the history �le. When this variable is

assigned a value, the history �le is truncated, if necessary, to contain no more than that number

of lines. The default value is 500.

OPTERR If set to the value 1, bash displays error messages generated by the getopts builtin

command (see SHELL BUILTIN COMMANDS below). OPTERR is initialized to 1 each

time the shell is invoked or a shell script is executed.

PROMPT COMMAND If set, the value is executed as a command prior to issuing each primary

prompt.

IGNOREEOF Controls the action of the shell on receipt of an EOF character as the sole input. If

set, the value is the number of consecutive EOF characters typed as the �rst characters on an

input line before bash exits. If the variable exists but does not have a numeric value, or has no

value, the default value is 10. If it does not exist, EOF signi�es the end of input to the shell.

This is only in e�ect for interactive shells.

TMOUT If set to a value greater than zero, the value is interpreted as the number of seconds to

wait for input after issuing the primary prompt. Bash terminates after waiting for that number

of seconds if input does not arrive.

FCEDIT The default editor for the fc builtin command.

FIGNORE A colon-separated list of suÆxes to ignore when performing �lename completion (see

READLINE below). A �lename whose suÆx matches one of the entries in FIGNORE is

excluded from the list of matched �lenames. A sample value is \.o:~".

INPUTRC The �lename for the readline startup �le, overriding the default of ~/.inputrc (see

READLINE below).

notify If set, bash reports terminated background jobs immediately, rather than waiting until before

printing the next primary prompt (see also the -b option to the set builtin command).

history control

HISTCONTROL If set to a value of ignorespace, lines which begin with a space character are not

entered on the history list. If set to a value of ignoredups, lines matching the last history line

are not entered. A value of ignoreboth combines the two options. If unset, or if set to any other

value than those above, all lines read by the parser are saved on the history list.

command oriented history If set, bash attempts to save all lines of a multiple-line command in

the same history entry. This allows easy re-editing of multi-line commands.

glob dot �lenames If set, bash includes �lenames beginning with a `.' in the results of pathname

expansion.

allow null glob expansion If set, bash allows pathname patterns which match no �les (see Path-

name Expansion below) to expand to a null string, rather than themselves.

histchars The two or three characters which control history expansion and tokenization (see HIS-

TORY EXPANSION below). The �rst character is the history expansion character, that is,

the character which signals the start of a history expansion, normally `!'. The second character is

the quick substitution character, which is used as shorthand for re-running the previous command

entered, substituting one string for another in the command. The default is `^'. The optional

third character is the character which signi�es that the remainder of the line is a comment, when

found as the �rst character of a word, normally `#'. The history comment character causes his-

tory substitution to be skipped for the remaining words on the line. It does not necessarily cause

the shell parser to treat the rest of the line as a comment.

nolinks If set, the shell does not follow symbolic links when executing commands that change the

current working directory. It uses the physical directory structure instead. By default, bash

follows the logical chain of directories when performing commands which change the current

directory, such as cd. See also the description of the -P option to the set builtin (SHELL

BUILTIN COMMANDS below).

hostname completion �le

51

8.2. TUTORIAL CHAPTER 8. PROCESSES AND ENVIRONMENT VARIABLES

HOSTFILE Contains the name of a �le in the same format as /etc/hosts that should be read when

the shell needs to complete a hostname. The �le may be changed interactively; the next time

hostname completion is attempted bash adds the contents of the new �le to the already existing

database.

noclobber If set, bash does not overwrite an existing �le with the >, >&, and <> redirection

operators. This variable may be overridden when creating output �les by using the redirection

operator >| instead of > (see also the -C option to the set builtin command).

auto resume This variable controls how the shell interacts with the user and job control. If this

variable is set, single word simple commands without redirections are treated as candidates for

resumption of an existing stopped job. There is no ambiguity allowed; if there is more than one

job beginning with the string typed, the job most recently accessed is selected. The name of

a stopped job, in this context, is the command line used to start it. If set to the value exact,

the string supplied must match the name of a stopped job exactly; if set to substring, the string

supplied needs to match a substring of the name of a stopped job. The substring value provides

functionality analogous to the %? job id (see JOB CONTROL below). If set to any other

value, the supplied string must be a pre�x of a stopped job's name; this provides functionality

analogous to the % job id.

no exit on failed exec If this variable exists, a non-interactive shell will not exit if it cannot execute

the �le speci�ed in the exec builtin command. An interactive shell does not exit if exec fails.

cdable vars If this is set, an argument to the cd builtin command that is not a directory is assumed

to be the name of a variable whose value is the directory to change to.

52

Chapter 9

Mail

Electronic Mail or email is the way most people �rst come into contact with the internet. Although you may

have used email in a graphical environment, here we will show you how mail was �rst intended to be used on

a multi-user system. To a large extent what applies here is really what is going on in the background of any

system that supports mail.

A mail message is a block of text sent from one user to another using some mail command or mailer program.

Although a mail message will usually be accompanied by a subject explaining what the mail is about. The idea

of mail is that a message can be sent to someone even though he may not be logged in at the time and the

mail will be stored for him until he is around to read it. An email address is probably familiar to you, such as:

jack@kangeroo.co.au. This means that jack has a user account on a computer called kangeroo.co.au. The

text after the @ is always the name of the machine. Todays Internet does not obey this exactly, but there is

always a machine that jack does have an account on where mail is eventually sent.

When mail is received for you (from another user on the system or from a user from another system) it is

appended to the �le /var/spool/mail/<username> called the mail �le or mail box �le. Where <username> is

your login name. You then run some program which interprets your mail �le, allowing you to browse the �le as

a sequence of mail messages and read and reply to them.

An actual addition to your mail �le might look like this:

From maynard@iafrica .com Mon Jun 1 21:20:21 1998

Return -Path : < maynard@iafrica .com >

Received : from lava . obsidian .co.za (root@lava . obsidian .co.za [192.168.2.254])

by ra.obsidian .co.za (8.8.7/8.8.7) with ESMTP id VAA11942

5 for < psheer@obsidian .co.za >; Mon , 1 Jun 1998 21:20:20 +0200

Received : from mail450 .icon .co.za (mail450 .icon .co.za [196.26.208.3])

by lava .obsidian .co.za (8.8.5/8.8.5) with ESMTP id VAA19357

for < psheer@obsidian .co.za >; Mon , 1 Jun 1998 21:17:06 +0200

Received : from smtp02 . iafrica .com (smtp02 .iafrica .com [196.7.0.140])

10 by mail450 .icon .co.za (8.8.8/8.8.8) with SMTP id VAA02315

for < psheer@icon .co.za >; Mon , 1 Jun 1998 21:24:21 +0200 (GMT)

Received : from default [196.31.19.216] (fullmoon)

by smtp02 .iafrica .com with smtp (Exim 1.73 #1)

id 0 ygTDL -00041 u-00; Mon , 1 Jun 1998 13:57:20 +0200

15 Message -ID : <357296 DF .60 A3@iafrica .com >

Date : Mon , 01 Jun 1998 13:56:15 +0200

From : a person < maynard@iafrica .com >

Reply -To : maynard@iafrica .com

Organization : private

20 X-Mailer : Mozilla 3.01 (Win95 ; I)

MIME -Version : 1.0

To : paul sheer < psheer@icon .co.za>

Subject : hello

Content -Type : text /plain ; charset =us-ascii

25 Content - Transfer - Encoding : 7 bit

Status : RO

53

9.1. SENDING AND READING MAIL CHAPTER 9. MAIL

X-Status : A

hey paul

30 its me

how r u doing

i am well

what u been upot

hows life

35 hope your well

amanda

Each mail message begins with a From at the beginning of a line, followed by a space. Then comes the mail

header, explaining where the message was routed from to get it to your mail box, who sent the message, where

replies should go to, the subject of the mail, and various other �elds. Above, the header is longer than the mail

messages. Examine the header carefully.

The header ends with the �rst blank line. The message itself (or body) starts right after. The next header in

the �le will once again start with a From. From's on the beginning of a line never exist within the body. If they

do, the mailbox is considered to be corrupt.

Some mail readers store their messages in a di�erent format. However the above format (called the mbox

format) is the de facto standard.

9.1 Sending and reading mail

The simplest way to send mail is to use the mail command. Type mail -s "hello there" <username>. mail

will then wait for you to type out your message. When you are �nished, enter a . on its own on a single line.

The username will be another user on your system. If no one else is on your system then send mail to root with

mail -s "Hello there" root or mail -s "Hello there" root@localhost (if the @ is not present then local

machine, localhost, is implied).

You can use mail to view your mailbox. This is a primitive utility in comparison to modern graphical mail

readers but is probably the only mail reader that can handle arbitrary sized mailboxes. Sometimes you may get

a mailbox that is over a gigabyte in size, and mail is the only way to delete messages from it. To view your

mailbox, type mail, and then z to read your next window of messages, and z- to view the previous window.

Most commands work like command message number, eg delete 14 or reply 7 etc. The message number is the

left column with an N next to it for new mail, etc.

For the state of the art in terminal based mail readers, try mutt and pine.

There are also some graphical mail readers in various stages of development. At the time I am writing this,

I have been using TkRat for a few months, which was the best mail reader I could �nd.

9.2 The SMTP protocol | sending mail raw to port 25

To send mail, it is actually not necessary to have a mail client at all. The mail client just follows SMTP (Simple

Mail Transfer Protocol), which you can type in from the keyboard.

For example, you can send mail by telneting to port 25 of a machine that has an MTA (Mail Transfer Agent

| also called the mailer daemon) running.

This is in fact how, so-called, anonymous mail or spam mail1 is sent on the Internet. A mailer daemon runs

in most small institutions in the world, and has the simple task of receiving mail requests and relaying them onto

other mail servers. Try this for example (obviously substituting mail.obsidian.co.za for the name of a mail

server that you normally use):

[root@cericon tex]# telnet mail . obsidian .co.za 25

Trying 192.168.2.1...

Connected to 192.168.2.1.

1
Spam is a term used to indicate unsolicited email | that is junk mail that is posted in bulk to large numbers of arbitrary email

address. This is considered unethical Internet practice.

54

CHAPTER 9. MAIL 9.2. THE SMTP PROTOCOL

Escape character is '^]'.

5 220 ra. obsidian .co.za ESMTP Sendmail 8.9.3/8.9.3; Wed , 2 Feb 2000 14:54:47 +0200

HELO cericon . obsidian .co.za

250 ra. obsidian .co.za Hello cericon .ctn .obsidian .co.za [192.168.3.9], pleased to meet you

MAIL FROM : psheer@icon .co.za

250 psheer@icon .co.za ... Sender ok

10 RCPT TO: maynard@iafrica .com

250 maynard@iafrica .com ... Recipient ok

DATA

354 Enter mail , end with "." on a line by itself

hi there

15 heres a short message

.

250 OAA04620 Message accepted for delivery

QUIT

20 221 ra. obsidian .co.za closing connection

Connection closed by foreign host .

[root@cericon tex]#

The above causes the message \hi there here is a short

message" to be delivered to maynard@iafrica.com (the ReCiPienT). Of course I can enter any address that

I like as the sender, and it can be diÆcult to determine who sent the message.

Now, you may have tried this and got a rude error message. This might be because the MTA is con�gured

not to relay mail except from speci�c trusted machines | say only those machines within that organisation. In

this way anonymous email is prevented.

55

9.2. THE SMTP PROTOCOL CHAPTER 9. MAIL

56

Chapter 10

Managing User Accounts and User

Ownerships

10.1 Users and Groups

Unix intrinsically1 supports multiple users. Each user has a personal home directory /home/<username> in

which their own �les are stored, hidden from other users.

So far you may have been using the machine as the root user, who is the system administrator and has

complete access to every �le on the system. The home directory of the root user is /root. Note that there

is an ambiguity here: the root directory is the top most directory, known as the / directory. The

root user's home directory is /root and is called the home directory of root.

Other than root, every other user has limited access to �les and directories. Always use your machine as a

normal user. Login as root only to do system administration. This will save you from the destructive power

that the root user has. Here we will show how to manually and automatically create new users.

Users are also divided into sets, called groups. A user may belong to several groups and there can be as many

groups on the system as you like. Each group is de�ned by a list of users that are part of that set. In addition

each user has a group of the same name, to which only he belongs.

10.2 File ownerships

Each �le on a system is owned by a particular user and also owned by a particular group. When you do an ls

-al you can see the user that owns the �le in the third column and the group that owns the �le in the fourth

column (these will often be identical indicating that the �le's group is a group to which only the user belongs).

To change the ownership of the �le simply use the chown, change ownerships, command as follows.

chown < user >[:< group >] < filename >

10.3 The password �le /etc/passwd

The only place in the whole system where a user name is registered is in this �le2. Once a user is added to this

�le, they exist on the system3. This is also known as the password �le to administrators. View this �le with

less:

root :x:0:0: Paul Sheer :/ root :/ bin /bash

1To the innermost degree
2One exception to this rule is the SMB package which emulates a Windows NT shared network drive. Because of the rather odd

way that Windows stores encrypted passwords, a completely separate password �le is required for this package int /etc/smbpasswd
3If you might have thought that user accounts where stored in some unreachable dark corner then this should dispel this idea.

57

10.4. THE SHADOW PASSWORD FILE /ETC/SHADOWCHAPTER 10. USER ACCOUNTS AND OWNERSHIPS

bin :x:1:1: bin :/ bin :

daemon :x:2:2: daemon :/ sbin :

adm :x:3:4: adm :/ var /adm :

5 lp:x:4:7: lp :/ var /spool /lpd :

sync :x:5:0: sync :/ sbin :/ bin /sync

shutdown :x:6:0: shutdown :/ sbin :/ sbin / shutdown

halt :x:7:0: halt :/ sbin :/ sbin /halt

mail :x:8:12: mail :/ var /spool /mail :

10 news :x:9:13: news :/ var /spool /news :

uucp :x :10:14: uucp :/ var /spool /uucp :

gopher :x :13:30: gopher :/ usr /lib /gopher -data :

ftp :x:14:50: FTP User :/ home /ftp :

nobody :x :99:99: Nobody :/:

15 alias :x :501:501::/ var /qmail /alias :/ bin /bash

paul :x :509:510: Paul Sheer :/ home /paul :/ bin /bash

jack :x :511:512: Jack Robbins :/ home /jack :/ bin /bash

silvia :x :511:512: Silvia Smith :/ home / silvia :/ bin /bash

Above is an extract of my own password �le. Each user is stored on a separate line. Many of these are not

human login accounts, but are used by other programs.

Each line contains seven �elds separated by colons. The account for jack looks like this:

jack The users login name.

x The users encrypted password. If this is an x, it indicates that it is stored in a separate �le, /etc/shadow.

This shadow password �le is a later addition to Unix systems that contains additional information about

the user.

511 The user's user identi�cation number, UID4.

512 The user's group identi�cation number, GID5.

Jack Robbins The user's full name6.

/home/jack The user's home directory. The HOME environment variable will be set to this when the user logs in.

/bin/bash The shell to start when the user logs in.

10.4 The shadow password �le /etc/shadow

The problem with traditional passwd �les is that they had to be world readable7 in order for programs to extract

information about the user: such as the users full name. This means that everyone can see the encrypted password

in the second �eld. Anyone can copy any other user's password �eld and then try billions of di�erent passwords

to see if they match. If you have a hundred users on the system, there is bound to be several that chose passwords

that match some word in the dictionary. The so-called dictionary attack will simply try all 80000 English words

until a match is found. If you think you are clever to add a number in front of an easy-to-guess dictionary word,

password cracking algorithms know about these as well8. To solve this problem the shadow password �le was

invented. The shadow password �le is used only for authentication9 and is not world readable | there is no

information in the shadow password �le that a common program will ever need | no regular user has permission

see the encrypted password �eld. The �elds are colon separated just like the passwd �le.

Here is an example line from a /etc/shadow �le:

jack :Q,Jpl . or6u2e7 :10795:0:99999:7:-1:-1:134537220

4This is used by programs as short alternative to the users login name. In fact, internally, the login name is never used, only the

UID.
5Similar applies to the GID. Groups will be discussed later
6Few programs ever make use of this �eld.
7Everyone on the system can read the �le
8And about every other trick you can think of.
9Verifying that the user is the genuine owner of the account.

58

CHAPTER 10. USER ACCOUNTS AND OWNERSHIPS 10.5. THE GROUPS FILE /ETC/GROUP

jack The user's login name.

Q,Jpl.or6u2e7 The user's encrypted password known as the hash of the password. This is the user's 8 character

password with a one way hash function applied to it. It is simply a mathematical algorithm applied to the

password that is known to produce a unique result for each password. To demonstrate: the (rather poor)

password Loghimin hashes to :lZ1F.0VSRRucs: in the shadow �le. An almost identical password loghimin

gives a completely di�erent hash :CavHIpD1W.cmg:. Hence trying to guess the password from the hash can

only be done by trying every possible password, and is therefore considered computationally expensive but

not impossible. To check if an entered password matches, just apply the identical mathematical algorithm

to it: if it matches then the password is correct. This is how the login command works. Sometimes you

will see a * in place of a hashed password. This means that the account has been disabled.

10795 Days since the January 1, 1970 that the password was last changed.

0 Days before which password may not be changed. Usually zero. This �eld is not often used.

99999 Days after which password must be changed. This is also rarely used, and will be set to 99999 by default.

7 Days before password is to expire that user is warned of pending password expiration.

-1 Days after password expires that account is considered inactive and disabled. -1 is used to indicate in�nity

| i.e. to mean we are e�ectively not using this feature.

-1 Days since January 1, 1970 when account will be disabled.

134537220 Flag reserved for future use.

10.5 The groups �le /etc/group and the groups command

On a Unix system you may want to give a number of users the same access rights. For instance, you may have

�ve users that should be allowed to access some privileged �le, and another ten users that are allowed to run a

certain program. You can group these users into, for example, two groups previl and wproc and then make the

relevant �le and directories owned by that group with, say,

chown root : previl / home / somefile

chown root :wproc / usr /lib / wproc

Permissions10 will dictate the kind of access, but for the mean time, the �le/directory must at least be owned

by that group.

The /etc/group �le is also colon separated. A line might look like this:

wproc :x:524: jack ,mary ,henry ,arthur ,sue , lester ,fred ,sally

wproc The name of the group. There should really also be a user of this name as well.

x The groups password. This �eld is usually set with an x and is not used.

524 The GID group ID. This must be unique in the groups �le.

jack,mary,henry,arthur,sue,lester,fred,sally The list of users that belong to the group. This must be comma

separated with no spaces.

The groups command

You can obviously study the group �le to �nd out which groups a user belongs to11, but when there are a lot of

groups it can be tedious to scan through the entire �le. The groups command prints out this information.

10explained later.
11That is, not \which users is a group comprised of", which is easy to see at a glance.

59

10.6. MANUALLY CREATING A USER ACCOUNTCHAPTER 10. USER ACCOUNTS AND OWNERSHIPS

10.6 Manually creating a user account

The following steps will create a user account:

/etc/passwd entry To create an entry in this �le, simply edit it and copy an existing line12. Always add users

from the bottom and try to preserve the \pattern" of the �le | i.e. if you see numbers increasing, make

yours �t in; if you are adding a normal user, add it after the existing lines of normal users. Each user must

have a unique UID and should usually have a unique GID. So if you are adding a line to the end of the �le,

make your new UID and GID the same as the last line but incremented by one.

/etc/shadow entry Create a new shadow password entry. At this stage you do not know what the hash is, so

just make it a *. You can set the password with the passwd command later.

/etc/group entry Create a new group entry for the user's group. Make sure the number in the group entry

matches that in the passwd �le.

/etc/skel This directory contains a template home directory for the user. Copy the entire directory and all its

contents into /home directory, renaming it to the name of the user. In the case of our jack example, you

should have a directory /home/jack.

Home directory ownerships You need to now change the ownerships of the home directory to match the

user. The command chown -R jack:jack /home/jack will accomplish this.

Setting the password Use passwd <username> to set the users password.

10.7 Automatically creating a user account | useradd and groupadd

The above process is tedious. Two commands that perform all these updates automatically are useradd, userdel

and usermod. The man pages will explain the use of these commands in detail. Note that di�erent avours of

Unix have di�erent commands to do this. Some may even have graphical programs or web interfaces to assist

in creating users.

In addition, there are the commands groupadd, groupdel and groupmod which do the same with respect to

groups.

10.8 User logins

The login command

A user most often gains access to the system through the login program. This looks up the UID and GID from

the passwd and group �le, and authenticates the user.

The following is quoted from the login man page:

login is used when signing onto a system. It can also be used to switch from one user to another at

any time (most modern shells have support for this feature built into them, however).

If an argument is not given, login prompts for the username.

If the user is not root, and if /etc/nologin exists, the contents of this �le are printed to the screen,

and the login is terminated. This is typically used to prevent logins when the system is being taken

down.

If special access restrictions are speci�ed for the user in /etc/usertty, these must be met, or the log in

attempt will be denied and a syslog13 message will be generated. See the section on "Special Access

Restrictions".

12When editing con�guration �les, never write out a line from scratch if it has some kind of special format. Always copy an existing

entry that has proven itself to be correct, and then edit in the appropriate changes. This will prevent you from making errors
13System error log program | syslog writes all system messages are to the �le /var/log/messages]

60

CHAPTER 10. USER ACCOUNTS AND OWNERSHIPS 10.8. USER LOGINS

If the user is root, then the login must be occuring on a tty listed in /etc/securetty14. Failures will

be logged with the syslog facility.

After these conditions are checked, the password will be requested and checks (if a password is required

for this username). Ten attempts are allowed before login dies, but after the �rst three, the response

starts to get very slow. Login failures are reported via the syslog facility. This facility is also used

to report any successful root logins.

If the �le .hushlogin exists, then a "quiet" login is performed (this disables the checking of the checking

of mail and the printing of the last login time and message of the day). Otherwise, if /var/log/lastlog

exists, the last login time is printed (and the current login is recorded).

Random administrative things, such as setting the UID and GID of the tty are performed. The

TERM environment variable is preserved, if it exists (other environment variables are preserved if

the -p option is used). Then the HOME, PATH, SHELL, TERM, MAIL, and LOGNAME environ-

ment variables are set. PATH defaults to /usr/local/bin:/bin:/usr/bin:.16 for normal users, and to

/sbin:/bin:/usr/sbin:/usr/bin for root. Last, if this is not a "quiet" login, the message of the day is

printed and the �le with the user's name in /usr/spool/mail will be checked, and a message printed

if it has non-zero length.

The user's shell is then started. If no shell is speci�ed for the user in /etc/passwd, then /bin/sh is

used. If there is no directory speci�ed in /etc/passwd, then / is used (the home directory is checked

for the .hushlogin �le described above).

The set user, su command

To temporarily become another user, you can use the su program:

su jack

This will prompt you for a password unless you are the root user to start o� with. This does nothing more

than change the current user to have the access rights of jack. Most environment variables will remain the same.

The HOME, LOGNAME and USER environment variables will be set to jack, but all other environment variables will

be inherited. su is therefore not the same as a normal login.

To use su to give you the equivalent of a login, do

su - jack

This will cause all initialisation scripts that are normally run when the user logs in to be executed17. Hence

after running su with the - option, you are as though you had logged in with the login command.

The who, w and users commands to see who is logged in

who and w gives list of users logged into the system and how much CPU they are using etc. who --help gives:

Usage : who [OPTION]... [FILE | ARG1 ARG2]

-H, -- heading print line of column headings

-i, - u, -- idle add user idle time as HOURS : MINUTES , . or old

5 -m only hostname and user associated with stdin

-q, -- count all login names and number of users logged on

-s (ignored)

-T, - w, -- mesg add user 's message status as +, - or ?

-- message same as -T

10 -- writable same as -T

14If this �le is not present, then root logins will be allowed from anywhere. It is worth deleting this �le if your machine is protected

by a �rewall and you would like to easily login from another machine on your LAN15. If /etc/securetty is present, then logins are

only allowed from the terminals it lists.
16Note that the . | the current directory | is listed in the PATH. This is only the default PATH however.
17What actually happens is that the subsequent shell is started with a - in front of the zero'th argument. This makes the shell

read the user's personal pro�le. The login command also does this.

61

10.8. USER LOGINS CHAPTER 10. USER ACCOUNTS AND OWNERSHIPS

-- help display this help and exit

-- version output version information and exit

If FILE is not specified , use / var /run /utmp . /var /log /wtmp as FILE is common .

15 If ARG1 ARG2 given , - m presumed : ` am i' or ` mom likes ' are usual .

A little more information can be gathered from the info pages for this command. The idle time indicates

how long since the user has last pressed a key. Most often, one just types who -Hiw.

w is similar. Its man page says:

w displays information about the users currently on the machine, and their processes. The header

shows, in this order, the current time, how long the system has been running, how many users are

currently logged on, and the system load averages for the past 1, 5, and 15 minutes.

The following entries are displayed for each user: login name, the tty name, the remote host, login

time, idle time, JCPU, PCPU, and the command line of their current process.

The JCPU time is the time used by all processes attached to the tty. It does not include past

background jobs, but does include currently running background jobs.

The PCPU time is the time used by the current process, named in the "what" �eld.

Finally, from a shell script the users command is useful for just seeing who is logged in. You can use in a

shell script, for example:

for user in ` users ` ; do

<etc >

The id command and e�ective UID

id prints your real and e�ective UID and GID. A user will normally have a UID and a GID but may also have

an e�ective UID and GID as well. The real UID and GID are what a process will generally think you are logged

in as. The e�ective UID and GID are the actual access permissions that you have when trying to read, write and

execute �les. These will be discussed in more detail later.

62

Chapter 11

Using Internet Services

This chapter should make you aware of the various methods for transferring �les and data over the Internet, and

remotely accessing Unix machines.

11.1 telnet and rlogin

telnet is a program for talking to a Unix network service. It is most often used to do a remote login. Try

telnet < remote_machine >

telnet localhost

to login to your remote machine. It needn't matter if there is no physical network, network services always

work regardless, because the machine always has an internal link to itself.

rlogin is like a minimal version of telnet that allows login access only. You can type

rlogin -l < username > < remote_machine >

rlogin -l jack localhost

if the system is con�gured to support remote logins.

11.2 FTP

FTP stands for File Transfer Protocol. If FTP is set up on your local machine, then other machines can download

�les. Type

ftp metalab .unc .edu

or

ncftp metalab .unc .edu

ftp was the tradition command-line Unix FTP client1, while ncftp is a more powerful client that will not

always be installed.

You will now be inside an FTP session. You will be asked for a login name and a password. The site

metalab.unc.edu is one that allows anonymous logins. This means that you can type anonymous as your

username, and then anything you like as a password. You will notice that it will ask you for an email address

as your password. Any sequence of letters with a @ symbol will suÆce, but you should put your actual email

address out of politeness.

1\client" always indicates the user program accessing some remote service.

63

11.3. FINGER CHAPTER 11. USING INTERNET SERVICES

The FTP session is like a reduced shell. You can type cd, ls and ls -al to view �le lists. help brings up a

list of commands and you can also type help <command> to get help on a speci�c command. You can download

a �le using the get <filename> command, but before you do this, you must set the transfer type to binary. The

transfer type indicates whether or not new-line characters will be translated to DOS format or not. Typing ascii

turns this on, while binary turns it o�. You may also want to enter hash which will print a # for every 1024

bytes of download. This is useful to watch the progress of a �le. Goto a directory that has a README �le in it

and enter,

get README

The �le will be downloaded into your current directory.

You can also cd to the /incoming directory and upload �les. Try,

put README

to upload the �le that you have just downloaded. Most FTP sites have an /incoming directory which is

ushed periodically.

FTP allows far more than just uploading of �les, although the administrator has the option to restrict access

to any further features. You can create directories, change ownerships and do almost anything you can on a local

�le system.

If you have several machines on a LAN, all should have FTP enabled to allow users to easily copy �les between

machines. con�guring the FTP server will be dealt with later.

11.3 finger

finger is a service for telling who is logged in on a remote system. Try finger @<hostname> to see who is

logged in on <hostname>. The �nger service will often be disabled on machines for security reasons.

11.4 Sending �les by email

uuencode and uudecode

Mail is becoming used more and more for transferring �les between machines. It is bad practice to send mail

messages over 64 kilobytes over the Internet because it tends to excessively load mail servers. Any �le larger

than 64 kilobytes should be uploaded by FTP onto some common FTP server. Most small images are smaller

than this size, hence sending a small JPEG2 image is considered acceptable.

To send �les by mail if you have to is best accomplished using uuencode. This utility takes binary �les and

packs them into a format that mail servers can handle. If you send a mail message containing arbitrary binary

data, it will more than likely be corrupted in the way, because mail agents are only designed to handle a limited

range of characters. uuencode takes a binary �le and represents it in allowable characters albeit taking up slightly

more space.

Here is a neat trick to pack up a directory and send it to someone by mail.

tar - czf - < mydir > | uuencode < mydir >. tar .gz \

| mail -s " Here are some files " < user >@<machine >

To unpack a uuencoded �le, use the uudecode command:

uudecode < myfile >. uu

2A common internet image �le format. These are especially compressed and are usually under 100 kilobytes for a typical screen

sized photograph.

64

CHAPTER 11. USING INTERNET SERVICES 11.4. SENDING FILES BY EMAIL

MIME encapsulation

Most mail readers have the ability to attach �les to mail messages and read these attachments. The way they do

this is not with uuencode but in a special format known as MIME encapsulation. MIME is way of representing

multiple �les inside a single mail message. The way binary data is handled is similar to uuencode, but in a

format known as base64.

If needed, there are two useful command-line utilities in the same vein as uuencode that can create and

extract MIME messages. These are mpack and munpack.

65

11.4. SENDING FILES BY EMAIL CHAPTER 11. USING INTERNET SERVICES

66

Chapter 12

Linux resources

Very often it is not even necessary to connect to the Internet to �nd the information you need. Chapter 15

contains a description of most of the documentation on a Linux distribution.

It is however essential to get the most up to date information where security and hardware driver support

is concerned. It is also fun and worthwhile to interact with Linux users from around the globe. The rapid

development of free software could mean that you may miss out on important new features that could streamline

IT services. Hence reviewing web news, reading newsgroups and subscribing to mailing lists are essential parts

of a system administrators role.

12.1 FTP sites and the sunsite mirror

The metalab.unc.edu FTP site is considered the primary site for free software the world over. It is mirrored in

almost every country that has a signi�cant IT infrastructure.

Our local South Africa mirror's are ftp.is.co.za in the directory /linux/sunsite, and also somewhere on

the site ftp.sdn.co.za.

It is advisable to browse around these ftp sites. In particular you should try to �nd the locations of:

� The directory where all sources for oÆcial GNU packages are stored. This would be a mirror of the Free

Software Foundation's FTP archives. These are packages that were commissioned by the FSF, and not

merely released under the GPL. The FSF will distribute them in source form (.tar.gz) for inclusion into

various distributions. They will of course compile and work under any Unix.

� The mirror of the metalab. This is known as the sunsite mirror because it used to be called

metalab.unc.edu. It contains enumerable Unix packages in source and binary form, categorised in a direc-

tory tree. For instance, mail clients have their own directory with many mail packages inside. metalab is the

place where a new developer can host some new software that they have produced. There are instructions

on the FTP site to upload software and to request it to be placed into a directory.

� The kernel sources. This is a mirror of the kernel archives where Linus and other maintainers upload new

stable1 and beta2 kernel versions and kernel patches.

� The various distributions. RedHat, Debian and possibly other popular distributions will be mirrored.

This list is by no means exhaustive. Depending on the willingness of the site maintainer, there may be mirrors

to far more sites from around the world.

The FTP site is how you will download free software. Often, maintainers will host their software on a a

web site, but every popular package will almost always have an FTP site where versions are persistently stored.

An example is lava.obsidian.co,za in the directory /pub/linux/cooledit where the author's own Cooledit

package is distributed | the layout is typical of an FTP site.

1Meaning that the software is well tested and free of serious bugs.
2Meaning that the software is in its development stages.

67

12.2. HTTP | WEB SITES CHAPTER 12. LINUX RESOURCES

12.2 HTTP | web sites

Most users should already be familiar with using a web browser. You should also become familiar with

the concept of a web search. This is when you point your web browser to a popular search engine like

http://infoseek.go.com/, http://www.altavista.com/ or http://www.yahoo.com/ and search for a par-

ticular key word. Searching is a bit of a black art with the billions of web pages out there. Always consult

the search engine's advanced search options to see how you can do more complex searches than just plain word

searches.

The web sites in the FAQ (excluding the list of known distributions) should all be consulted to get a overview

on some of the primary sites of interest to Linux users.

Especially important is that you keep up to do with the latest Linux news. I �nd the Linux Weekly News

http://lwn.net/ excellent for this. Also, The famous (and infamous) SlashDot http://slashdot.org/ web

site gives daily updates about \stu� that matters" and therefore contains a lot about free software.

Fresh Meat http://frshmeat.net/ is a web site devoted to new software releases. You will �nd new or

updated packages uploaded every few hours or so.

Linux Planet http://www.linuxplanet.com/ seems to be a new (?) web site that I just found while writing

this. It looks like it contains lots of tutorial information on Linux.

Realistically though, a new Linuxweb site is created every week; almost anything prepended or append to

\linux" is probably a web site already.

12.3 Mailing lists

A mailing list is a special address that when posted to, automatically sends email a long list of other addresses.

One usually subscribes to a mailing list by sending some especially formatted email, or requesting a subscription

from the mailing list manager.

Once you have subscribed to a list, any email you post to the list will be sent to every other subscriber, and

every other subscribers posts to the list will be sent to you.

There are mostly three types of mailing lists. Those over the majordomo type, those of the listserv type, and

those of the *-request type.

Majorodom and Listserv

To subscribe to the majordomo type variety send mail message to majordomo@<machine> with no subject and

a one line message:

subscribe < mailing -list -name >

This will subscribe you to the mailing list <mailing-list-name>@<machine>, where messages are posted

to.

Do the same for listserv type lists, by sending the same message to listserv@<machine>.

For instance, if you are an administrator for any machine that is exposed to the Internet you should get on

bugtraq. Send an email

subscribe bugtraq

to listserv@netspace.org, and become one of the tens of thousands of users that read and report security

problems about Linux.

To unsubscribe to a list is just as simple, send an email message,

unsubscribe < mailing -list -name >

68

CHAPTER 12. LINUX RESOURCES 12.4. NEWSGROUPS

Never send subscribe or unsubscribe messages to the mailing list itself. Send subscribe or

unsubscribe messages only to to the address majordomo@<machine> or listserv@<machine>.

*-request

These can be subscribed to by sending an empty email message to <mailing-list-name>-request@<machine>

with the word subscribe as the subject. The same email with the word unsubscribe will remove you from the

list.

Once again, never send subscribe or unsubscribe messages to the mailing list itself..

12.4 Newsgroups

A newsgroup is a notice board that everyone in the world can see. There are tens of thousands of newsgroups

and each group is unique in the world.

The client software you will use to read a newsgroup is called a news reader. rtin is a popular text mode

reader, while netscape is graphical.

Newsgroups are named like Internet hosts. One you might be interested in is comp.os.linux.announce. The

comp is the broadest subject description for computers, os stands for operating systems, etc. There are many

other linux newsgroups devoted to various Linux issues.

Newsgroups servers are big hungry beasts. They form a tree like structure on the Internet. When you send

mail to a newsgroups it takes about a day or so for the mail you sent to propagate to every other server in the

world. Likewise you can see a list of all the messages posted to each newsgroup by anyone anywhere.

Whats the di�erence between a newsgroup and a mailing list? The advantage of a newsgroup is that you

don't have to download the messages your are not interested in. If you are on a mailing list, you get all the

mail sent to the list. With a newsgroup you can look at the message list and retrieve only the messages you are

interested in.

Why not just put the mailing list on a web page? If you did, then everyone in the world will have to go over

international links to get to the web page. It would load the server in proportion to the number of subscribers.

This is exactly what SlashDot is. However your newsgroup server is local, hence you retrieve mail over a faster

link and save Internet traÆc.

69

12.4. NEWSGROUPS CHAPTER 12. LINUX RESOURCES

70

Chapter 13

Permission and Modi�cation Times

13.1 Permissions

Every �le and directory on a Unix system, besides being owned by a user and a group, has access ags1 dictating

what kind of access that user and group has to the �le.

Doing an ls -ald /bin/cp /etc/passwd /tmp will give you a listing:

-rwxr -xr-x 1 root root 28628 Mar 24 1999 / bin /cp

-rw-r--r-- 1 root root 1151 Jul 23 22:42 / etc /passwd

drwxrwxrwt 5 root root 4096 Sep 25 15:23 / tmp

In the left most column are these ags, which give a complete description of the access rights to the �le.

The furthest ag to the left is, so far, either - or d indicating an ordinary �le or directory. The remaining nine

have a - to indicate an unset value or one of several possible characters. Table 13.1 gives a complete description

of �le system permissions.

The chmod command is used to change the permissions of a �le. It usually used like:

chmod [- R] [u|g|o|a][+|-][r|w|x|s|t] < file > [< file >] ...

For example

chmod u+x myfile

adds execute permissions for the user of my�le. And,

chmod a-rx myfile

removes read and execute permissions for all | i.e. user, group and other.

The -R options once again means recursive, diving into subdirectories as usual.

Permission bits are often represented in their binary form, especially when programming. It is convenient

to show the rwxrwxrwx set in octal, where each digit �ts conveniently into three bits. Files on the system are

usually created with mode 0644, meaning rw-r--r--. You can set permissions explicitly with an octal number:

chmod 0755 myfile

Gives myfile the permissions rwxr-xr-x.

In the table you can see s, the setuid or setgid bit. If it is used without execute permissions then it has no

meaning and is written capitalised as an S. This bit e�ectively colourises a x into an s, hence you should read

1A switch that can either be on or o�

71

13.2. MODIFICATION TIMES CHAPTER 13. PERMISSION AND MODIFICATION TIMES

Possible

chars, -

for unset

E�ect for directories E�ect for �les

r
User can read the contents of the direc-

tory.

User can read the �le.

User, u
w

With x or s, user can create and remove

�les in the directory.

User can write to the �le.

x s S
User can access the contents of the �les in

a directory for x or s. S has no e�ect.

User can execute the �le for x or s. s,

known as the setuid bit, means to set the

user owner of the subsequent process to

that of the �le. S has no e�ect.

r
Group can read the contents of the direc-

tory.

Group can read the �le.

Group, g
w

With x or s, group can create and remove

�les in the directory.

Group can write to the �le.

x s S
Group can access the contents of the �les

in a directory for x. For s force all �les

in this directory to the same group as the

directory. S has no e�ect.

Group can execute the �le for x or s. s,

known as the setgid bit, means to set the

group owner of the subsequent process to

that of the �le. S has no e�ect.

r
Everyone can read the contents of the di-

rectory.

Everyone can read the �le.

Other, o
w

With x or t, everyone can create and re-

move �les in the directory.

Everyone can write to the �le.

x t T
Everyone can access the contents of the

�les in a directory for x and t. t, is known

as the sticky bit, and prevents users from

removing �les that they do not own, hence

they are free to append to the directory,

but not remove other users' �les. T has no

e�ect.

Group can execute the �le for x or t. For t

save the processes text image to the swap

device so that future loads will be faster (I

don't know if this has an e�ect on Linux).

T has no e�ect.

Table 13.1: File and directory permissions

and s as execute with the setuid or setgid bit set. t is known as the sticky bit. It also has no meaning if there

are no execute permissions and is written as a capital T.

The leading 0 can in be ignored, but is preferred in order to be explicit. It can take on a value representing

the three bits, setuid (4), setgid (2) and sticky (1). Hence a value of 5764 is 101 111 110 100 in binary and gives

-rwsrw-r-T.

13.2 Modi�cation times and the stat command

In addition to permissions, each �le has three integers associated with it that represent in seconds, the last time

the �le was accessed (read), when it was last modi�ed, and when it was created. These are known as the atime,

mtime and ctime of a �le respectively.

To get a complete listing of the �le's permissions, use the stat command. Here is the result of stat /etc:

File : "/ etc "

Size : 4096 Filetype : Directory

Mode : (0755/ drwxr -xr-x) Uid : (0/ root) Gid : (0/ root)

Device : 3,1 Inode : 14057 Links : 41

5 Access : Sat Sep 25 04:09:08 1999(00000.15:02:23)

Modify : Fri Sep 24 20:55:14 1999(00000.22:16:17)

Change : Fri Sep 24 20:55:14 1999(00000.22:16:17)

The Size: quoted here is the actual amount of disk space used in order to store the directory listing, and is

the same as reported by ls. In this case it is probably four disk blocks of 1024 bytes each. The size of a directory

72

CHAPTER 13. PERMISSION AND MODIFICATION TIMES 13.2. MODIFICATION TIMES

as quoted here does not mean the sum of all �les contained under it.

73

13.2. MODIFICATION TIMES CHAPTER 13. PERMISSION AND MODIFICATION TIMES

74

Chapter 14

Symbolic and Hard Links

14.1 Soft links

Very often, a �le is required to be in two di�erent directories at the same time. Think for example of a con�gu-

ration �le that is required by two di�erent software packages that are looking for the �le in di�erent directories.

The �le could simple be copied, but this would create an administrative nightmare to have to replicate changes

in more than one place. The way two �les can have the same data is with links.

Try

touch myfile

ln -s myfile myfile2

ls - al

cat > myfile

5 a

few

lines

of

text

10 ^C

cat myfile

cat myfile2

You will notice that the ls -al listing has the letter l on the far left next to myfile2 while the usual - next

to myfile. This indicates that the �le is a soft link (also known as a symbolic link or symlink) to some other �le.

A symbolic link contains no data of its own, only a reference to another �le. It can even contain a reference

to a directory. In either case, programs operating on the link will actually see the �le or directory it points to.

Try

mkdir mydir

ln -s mydir mydir2

ls - al .

touch ./ mydir /file1

5 touch ./ mydir2 /file2

ls - al ./ mydir

ls - al ./ mydir2

The directory mydir2 is a symbolic link to mydir2 and appears as though it is a replica of the original. Once

again the directory mydir2 does not consume additional disk space | a program that reads from the link is

unaware that it is seeing into a di�erent directory.

Symbolic links can also be copied and retain their value:

cp mydir2 /

ls - al /

75

14.2. HARD LINKS CHAPTER 14. SYMBOLIC AND HARD LINKS

cd / mydir2

You have now copied the link to the root directory. However the link points to a relative path mydir in the

same directory as the link. Since there is no mydir here, an error is raised.

Try

rm -f mydir2 / mydir2

ln -s ` pwd `/ mydir mydir2

ls - al

Now you will see mydir2 has an absolute path. You can try

cp mydir2 /

ls - al /

cd / mydir2

and notice that it does now work.

One of the common uses of symbolic links is to make mounted (see Section 18.4) �le systems accessible from

a di�erent directory. For instance, you may have a large directory that has to be split over several physical disks.

For clarity, you can mount the disks as /disk1, /disk2 etc.and then link the various sub-directories in a way

that makes eÆcient use of the space you have.

Another example is the linking of /dev/cdrom to, say, /dev/hdc so that programs accessing the device (see

Chapter 17.1) �le /dev/cdrom, actually access the correct IDE drive.

14.2 Hard links

Unix allows the data of a �le to have more than one name in separate places in the same �le system. Such a �le

with more than one name for the same data is called a hard linked �le and is very similar to a symbolic link. Try

touch mydata

ln mydata mydata2

ls - al

The �les mydata2 and mydata2 are indistinguishable. They share the same data, and have a 2 in second

column of the ls -al listing. This means that they are hard linked twice (that there are two names for this

�le).

The reason why hard links are sometimes used in preference to symbolic links is that some programs are not

fooled by a symbolic link: if you, say, have a script that uses cp to copy a �le, it will copy the symbolic link

instead of the �le it points to1. A hard link however will always be seen as a real �le.

Hard links however cannot be made between �les on di�erent �le-systems. They also cannot be made between

directories.

1cp actually has an option to override this behaviour

76

Chapter 15

Pre-installed Documentation

This chapter describes where to �nd documentation on a common Linux distribution. At the moment a RedHat

distribution is assumed, but this is equally applicable to other distributions, although the exact locations might

be di�erent.

For many proprietary operating systems, the de�nitive reference for their operating system are printed texts.

For Linux, much of documentation is written by the authors themselves and is included with the source code. A

typical Linux distribution will package this along with the compiled binaries. Common distributions come with

hundreds of megabytes of printable, hyper-linked, and plane text documentation. There is often no need to

go the the World Web Wide unless something is outdated.

If you have not already tried this, run

ls - ld / usr /*/ doc / usr /*/*/ doc / usr /share /*/*/ doc \

/opt /*/ doc / opt /*/*/ doc

This is a somewhat unreliable way to search for potential documentation directories.

Kernal documentation: /usr/src/linux/Documentation/

This contains information on all hardware drivers except graphics cards. The kernel has built in drivers for

networking cards, SCSI controllers, sound cards and so on. Hence if you need to �nd out if one of these is

supported, this is the �rst place to look.

X Window System graphics hardware support: /usr/X11R6/lib/X11/doc/

X installs in a separate tree, In here you will �nd documentation on all of the graphics hardware supported by

X, how to con�gure X, tweak video modes, cope with incompatible graphics cards, and so on.

TEX and Metafont reference: /usr/share/texmf/doc/

This is an enormous and comprehensive (and possibly exhaustive) reference to the TEX typesetting language and

the Metafont font generation package.

LATEX HTML documentation: /usr/share/texmf/tex/latex/

This is a complete reference to the LATEX typesetting language. (This book itself was typeset using LATEX.)

Frequently Asked Questions: /usr/doc/FAQ

This contains some beginners documentation.

77

CHAPTER 15. PRE-INSTALLED DOCUMENTATION

Howto's: /usr/doc/HOWTO

This is an excellent source of laymen tutorials for setting up almost any kind of service you can imagine. It is

worth listing the contents here to emphasise diversity of topics covered:
3Dfx-HOWTO Danish - HOWTO Intranet-Server -HOWTO PPP-HOWTO Software-Release - Practice- HOWTO

AX25 -HOWTO Distribution -HOWTO Italian -HOWTO PalmOS -HOWTO Sound -HOWTO

Access -HOWTO ELF-HOWTO Java -CGI -HOWTO Parallel- Processing-HOWTO Sound - Playing -HOWTO

Alpha -HOWTO Emacspeak-HOWTO Kernel -HOWTO Pilot -HOWTO Spanish -HOWTO

5 Assembly-HOWTO Esperanto-HOWTO Keyboard-and- Console -HOWTO Plug -and-Play - HOWTO TeTeX -HOWTO

Bash - Prompt -HOWTO Ethernet-HOWTO KickStart-HOWTO Polish -HOWTO Text -Terminal-HOWTO

Benchmarking -HOWTO Finnish -HOWTO LinuxDoc+Emacs + Ispell -HOWTO Portuguese-HOWTO Thai -HOWTO

Beowulf -HOWTO Firewall-HOWTO META -FAQ PostgreSQL-HOWTO Tips -HOWTO

BootPrompt-HOWTO French - HOWTO MGR-HOWTO Printing-HOWTO UMSDOS -HOWTO

10 Bootdisk-HOWTO Ftape -HOWTO MILO -HOWTO Printing-Usage -HOWTO UPS-HOWTO

Busmouse-HOWTO GCC-HOWTO MIPS -HOWTO Quake -HOWTO UUCP -HOWTO

CD- Writing -HOWTO German - HOWTO Mail -HOWTO README \unix {}- Internet- Fundamentals -HOWTO

CDROM -HOWTO Glibc2 - HOWTO Modem -HOWTO RPM-HOWTO User -Group - HOWTO

COPYRIGHT HAM-HOWTO Multi -Disk -HOWTO Reading -List -HOWTO VAR-HOWTO

15 Chinese -HOWTO Hardware-HOWTO Multicast-HOWTO Root -RAID -HOWTO VME-HOWTO

Commercial-HOWTO Hebrew - HOWTO NET -3- HOWTO SCSI - Programming -HOWTO VMS-to -Linux - HOWTO

Config -HOWTO INDEX .html NFS-HOWTO SMB-HOWTO Virtual - Services-HOWTO

Consultants -HOWTO INFO - SHEET NIS-HOWTO SRM-HOWTO WWW-HOWTO

Cyrillic-HOWTO IPCHAINS-HOWTO Networking -Overview-HOWTO Security-HOWTO WWW-mSQL -HOWTO

20 DNS-HOWTO IPX-HOWTO Optical -Disk - HOWTO Serial -HOWTO XFree86 -HOWTO

DOS-Win-to-Linux -HOWTO IR -HOWTO Oracle -HOWTO Serial - Programming -HOWTO XFree86 -Video -Timings -HOWTO

DOS-to-Linux -HOWTO ISP-Hookup -HOWTO PCI-HOWTO Shadow - Password-HOWTO XWindow -User - HOWTO

DOSEMU -HOWTO Installation -HOWTO PCMCIA -HOWTO Slovenian -HOWTO

Mini Howto's: /usr/doc/HOWTO/mini

These are smaller quickstart tutorials in the same vein:
3- Button -Mouse Coffee IP- Masquerade Mail2News Proxy -ARP- Subnet StarOffice

ADSL Colour -ls IP- Subnetworking Man-Page Public -Web-Browser Term - Firewall

ADSM - Backup Cyrus -IMAP ISP- Connectivity Modules Qmail +MH TkRat

AI- Alife DHCP Install -From -ZIP Multiboot-with -LILO Quota Token -Ring

5 Advocacy DHCPcd Kerneld NCD-X- Terminal RCS Ultra -DMA

Alsa -sound DPT -Hardware-RAID LBX NFS-Root README Update

Apache +SSL+PHP+fp Diald LILO NFS-Root -Client RPM+ Slackware Upgrade

Automount Diskless Large -Disk Netrom -Node RedHat -CD VAIO +Linux

Backup -With -MSDOS Ext2fs - Undeletion Leased -Line Netscape+Proxy Remote -Boot VPN

10 Battery -Powered Fax -Server Linux +DOS+Win95 +OS2 Netstation Remote -X-Apps Vesafb

Boca Firewall- Piercing Linux + FreeBSD News -Leafsite SLIP -PPP-Emulator Visual -Bell

BogoMips GIS -GRASS Linux + FreeBSD -mini - HOWTO Offline - Mailing Secure -POP+SSH Windows - Modem - Sharing

Bridge GTEK -BBS -550 Linux +NT-Loader PLIP Sendmail+UUCP WordPerfect

Bridge + Firewall Hard -Disk - Upgrade Linux +Win95 Partition Sendmail-Address - Rewrite X-Big- Cursor

15 Bzip2 INDEX Loadlin +Win95 Partition- Rescue Small - Memory XFree86 - XInside

Cable -Modem INDEX .html Loopback-Root -FS Path Software-Building Xterm - Title

Cipe +Masq IO-Port -Programming Mac- Terminal Pre- Installation -Checklist Software-RAID ZIP -Drive

Clock IP-Alias Mail -Queue Process - Accounting Soundblaster -AWE ZIP -Install

Linux Documentation Project: /usr/doc/LDP

These are several online books in HTML format, such as the System Administrators Guide, SAG, the Network

Administrators Guide, NAG, the Linux Programmers Guide, LPG.

Web documentation: /home/httpd/html

Some packages may install documentation here so that it goes online automatically if your web server is running.

Apache Reference: /home/httpd/html/manual

Apache keeps this reference material online, so that it is the default web page shown when you install Apache

for the �rst time. Apache is the most popular web server.

Individual package documentation

All packages installed on the system have their own individual documentation directory. A package foo will most

probably have a documentation directory /usr/doc/foo. This most often contains documentation released with

the sources of the package, such as release information, feature news, example code, FAQ's that are not part of

the FAQ package, etc. If you have a particular interest in a package, you should always scan its directory in

/usr/doc or, better still, download its source distribution.

These are the /usr/doc directories that contained more than a trivial amount of documentation for that

package. In some cases, the package had complete references. (For example, the complete Python references

were contained nowhere else.)

78

CHAPTER 15. PRE-INSTALLED DOCUMENTATION

BitchX expect -5.24 guile -1.3 lout pmake -2.1.33 svgalib -1.3.1

ImageMagick -4.2.2 ext2ed -0.1 gv -3.5.8 lsof -4.42 python -docs -1.5.1 taper -6.9

SVGATextMode -1.8 f2c -19970805 ical -2.2 lynx -2.8.1 rhl-alpha -install -addend -en -6.0 texinfo -3.12 f

SoundStudio -0.9.1 fetchmail -5.0.0 icewm -0.9.33 mars -nwe -0.99 pl15 rhl- install -guide -en -6.0 tin -1.4 _990216

5 TkStep -8.0.4 fileutils -4.0 inn -2.2 mgetty -1.1.14 rpm -3.0 ucd-snmp -3.6.1

abuse -1.10-5 freetype -1.2 ipchains -1.3.8 mod_php -2.0.1 rxvt -2.6. PRE2 uucp -1.06.1

am- utils -6.0 gated -3.5.10 isapnptools -1.18 mod_php3 -3.0.7 samba -2.0.3 vim- common -5.3

bind -8.2 gawk -3.0.3 kaffe -1.0. b4 mtools -3.9.1 sendmail wu-ftpd -2.4.2 vr17

blt -2.4 g gd -1.3 kernel -pcmcia -cs -2.2.5 ncurses -devel -4.2 sgml -tools xanim -27070

10 bzip2 -0.9.0 c ghostscript -5.10 lesstif -0.88.1 netscape-common -4.51 shadow - utils -980403 xbanner -1.31

console -tools -19990302 gimp -1.0.1 lesstif -devel -0.88.1 p2c -1.22 slang -devel -1.2.2 xlispstat -3.52.9

cooledit -3.11.6 gimp - manual -1.0.0 libtiff -devel -3.4 pam -0.66 slrn -0.9.5.4 xntp3 -5.93

cvs -1.10.5 glib -1.2.1 libtool -1.2 f pgp -2.6.3 i-1 spice -2 g6 xpm- devel -3.4 j

docbook -stylesheets -1.39 glibc -2.1.1 libungif-devel -4.1.0 pine -4.10 squid -2.2. STABLE1 xv -3.10 a

15 dosemu -0.99.10 gtk +-1.2.1 lilo -0.21 pinfocom -3.0 ssh -1.2.26 zsh -3.0.5

Manual Pages | man: /usr/man/

Manual pages were discussed in Section 4.7. There may be other directory trees that contain man pages | on

some other Unix's man pages are littered everywhere.

To convert a man page to PostScript (for printing or viewing), use for example (for the cp command),

groff - Tps - mandoc / usr /man /man1 /cp .1 > cp.ps ; gv cp.ps

info pages: /usr/info/

Info pages were discussed in Section 4.8.

79

CHAPTER 15. PRE-INSTALLED DOCUMENTATION

80

Chapter 16

Overview of the Unix Directory Layout

Packages

Linux systems are divided into hundreds of small packages each performing some logical group of operations.

On Linux, many small self-contained packages inter-operate to give greater functionality than would large self-

contained pieces of software. There is also no clear distinction between what is part of the operating system and

what is an application | everything is just a package.

A software package on a RedHat type system is distributed in a single RedHat Package Manager (RPM) �le

that has a .rpm extension. On a Debian distribution, the equivalent is a .deb package �le, and on the Slackware

distribution there are Slackware .tgz �les.

Each package will unpack to many �les which are placed all over the system. Packages generally do not create

major directories but unpack �les to existing directories.

Note that on a newly installed system there are practically no �les anywhere that do not belong to some kind

of package.

Unix Directory Superstructure

The root directory on a Unix system typically looks like:

drwxr -xr-x 2 root root 2048 Aug 25 14:04 bin

drwxr -xr-x 2 root root 1024 Sep 16 10:36 boot

drwxr -xr-x 7 root root 35840 Aug 26 17:08 dev

drwxr -xr-x 41 root root 4096 Sep 24 20:55 etc

5 drwxr -xr-x 24 root root 1024 Sep 27 11:01 home

drwxr -xr-x 4 root root 3072 May 19 10:05 lib

drwxr -xr-x 2 root root 12288 Dec 15 1998 lost +found

drwxr -xr-x 7 root root 1024 Jun 7 11:47 mnt

dr-xr-xr-x 80 root root 0 Sep 16 10:36 proc

10 drwxr -xr-x 3 root root 3072 Sep 23 23:41 sbin

drwxrwxrwt 5 root root 4096 Sep 28 18:12 tmp

drwxr -xr-x 25 root root 1024 May 29 10:23 usr

The usr directory typically looks like:

drwxr -xr-x 9 root root 1024 May 15 11:49 X11R6

drwxr -xr-x 6 root root 27648 Sep 28 17:18 bin

drwxr -xr-x 2 root root 1024 May 13 16:46 dict

drwxr -xr-x 261 root root 7168 Sep 26 10:55 doc

5 drwxr -xr-x 7 root root 1024 Sep 3 08:07 etc

drwxr -xr-x 2 root root 2048 May 15 10:02 games

drwxr -xr-x 4 root root 1024 Mar 21 1999 i386 -redhat - linux

drwxr -xr-x 36 root root 7168 Sep 12 17:06 include

drwxr -xr-x 2 root root 9216 Sep 7 09:05 info

81

CHAPTER 16. UNIX DIRECTORY LAYOUT

10 drwxr -xr-x 79 root root 12288 Sep 28 17:17 lib

drwxr -xr-x 3 root root 1024 May 13 16:21 libexec

drwxr -xr-x 15 root root 1024 May 13 16:35 man

drwxr -xr-x 2 root root 4096 May 15 10:02 sbin

drwxr -xr-x 39 root root 1024 Sep 12 17:07 share

15 drwxr -xr-x 3 root root 1024 Sep 4 14:38 src

drwxr -xr-x 3 root root 1024 Dec 16 1998 var

The /usr/local directory typically looks like:

drwxr -xr-x 3 root root 4096 Sep 27 13:16 bin

drwxr -xr-x 2 root root 1024 Feb 6 1996 doc

drwxr -xr-x 4 root root 1024 Sep 3 08:07 etc

drwxr -xr-x 2 root root 1024 Feb 6 1996 games

5 drwxr -xr-x 5 root root 1024 Aug 21 19:36 include

drwxr -xr-x 2 root root 1024 Sep 7 09:08 info

drwxr -xr-x 9 root root 2048 Aug 21 19:44 lib

drwxr -xr-x 12 root root 1024 Aug 2 1998 man

drwxr -xr-x 2 root root 1024 Feb 6 1996 sbin

10 drwxr -xr-x 15 root root 1024 Sep 7 09:08 share

and the /usr/X11R6 directory also looks similar. What is apparent here is that all these directories contain

a similar set of subdirectories. This set of subdirectories is called a directory superstructure or superstructure1.

The superstructure will always contain a bin and lib subdirectory, but most all others are optional.

Each package will install under one of these superstructures, meaning that it will unpack many �les into various

subdirectories of the superstructure. A RedHat package would always install under the /usr or / superstructure,

unless it is a graphical X Window System application which installs under the /usr/X11R6 superstructure. Some

very large applications may install under a /opt/<package-name> superstructure, and home-made packages

usually install under the /usr/local/ superstructure. Packages almost never install �les across di�erent

superstructures.

Typically, most of the system is under /usr. This directory can be read only, since packages should never

need to write to this directory | any writing is done under /var or /tmp (/usr/var and /usr/tmp are often just

symlinked to /var or /tmp respectively). The small amount under / that is not part of another superstructure

(usually about 40 megabytes) perform essential system administration functions. These are commands needed

to bring up or repair the system in the absence of /usr.

The list of superstructure sub-directories and their descriptions is as follows:

bin Binary executables. Usually all bin directories are in the PATH environment variable so that the shell will

search all these directories for binaries.

sbin Superuser binary executables. These are programs for system administration only. Only the super user will

have these in their PATH.

lib Libraries. All other data needed by programs goes in here. Most packages have there own subdirectory

under lib to store data �les into. Dynamically Linked Libraries (DLL's or .so �les.)2 are stored directly

in lib.

etc Etcetera. Con�guration �les.

var Variable data. Data �les that are continually being recreated or updated.

doc Documentation. This directory is discussed in Chapter 15.

man Manual pages. This directory is discussed in Chapter 15.

info INFO pages. This directory is discussed in Chapter 15.

share Shared data. Architecture independent �les. Files that are independent of the hardware platform go in

here. This allows them to be shared across di�erent machines, even though they may have a di�erent kind

of processor altogether.

1To my knowledge this is a new term not previously used by Unix administrators.
2Executable program code shared by more than one program in the bin directory to save disk space and memory.

82

CHAPTER 16. UNIX DIRECTORY LAYOUT

include C header �les. These are for development.

src C source �les. These are sources to the kernel or locally built packages.

tmp Temporary �les. A convenient place for running programs to create a �le for temporarily use.

Linux on a single 1.44 megabyte oppy disk

You can get Linux to run on a 1.44 megabyte oppy disk if you trim all unneeded �les o� an old Slackware

distribution with a 2.0.3x kernel. You can compile a small 2.0.3x kernel to about 400 kilobytes (compressed). A

�le-system can be reduced to 2{3 megabytes of absolute essentials, and when compressed will �t into 1 megabyte.

If the total is under 1.44 megabytes, then you have your Linux on one oppy. The �le-list might be as follows

(includes all links):
/bin /etc /lib /sbin /var

/bin/sh /etc /default /lib/ld.so /sbin /e2fsck /var/adm

/bin/cat /etc /fstab /lib/libc .so .5 /sbin /fdisk /var/adm/utmp

/bin/chmod /etc /group /lib/ld-linux .so .1 /sbin /fsck /var/adm/cron

5 /bin/chown /etc /host .conf /lib/libcurses .so .1 /sbin /ifconfig /var/spool

/bin/cp /etc /hosts /lib/libc .so .5.3.12 /sbin /iflink /var/spool /uucp

/bin/pwd /etc /inittab /lib/ libtermcap.so .2.0.8 /sbin /ifsetup /var/spool /uucp / SYSLOG

/bin/dd /etc /issue /lib/ libtermcap.so .2 /sbin /init /var/spool /uucp / ERRLOG

/bin/df /etc /utmp /lib/libext2fs .so .2.3 /sbin /mke2fs /var/spool /locks

10 /bin/du /etc /networks /lib/ libcom_err.so .2 /sbin /mkfs /var/tmp

/bin/free /etc /passwd /lib/ libcom_err.so .2.0 /sbin /mkfs .minix /var/run

/bin/ gunzip /etc /profile /lib/libext2fs .so .2 /sbin /mklost +found /var/run/utmp

/bin/gzip /etc /protocols /lib/libm .so .5.0.5 /sbin /mkswap

/bin/ hostname /etc /rc.d /lib/libm .so .5 /sbin /mount /home /user

15 /bin/login /etc /rc.d/rc .0 /lib/cpp /sbin /route

/bin/ls /etc /rc.d/rc.K /sbin /shutdown /mnt

/bin/mkdir /etc /rc.d/rc.M /usr /sbin /swapoff

/bin/mv /etc /rc.d/rc.S /usr/adm /sbin /swapon /proc

/bin/ps /etc /rc.d/rc. inet1 /usr/bin /sbin /telinit

20 /bin/rm /etc /rc.d/rc .6 /usr/bin/less /sbin /umount /tmp

/bin/stty /etc /rc.d/rc .4 /usr/bin/more /sbin /agetty

/bin/su /etc /rc.d/rc. inet2 /usr/bin/sleep /sbin /update /dev /< various - devices >

/bin/sync /etc /resolv .conf /usr/bin/reset /sbin /reboot

/bin/zcat /etc /services /usr/bin/zless /sbin /netcfg

25 /bin/ dircolors /etc /termcap /usr/bin/file /sbin /killall5

/bin/mount /etc /motd /usr/bin/fdformat /sbin /fsck .minix

/bin/ umount /etc /magic /usr/bin/strings /sbin /halt

/bin/bash /etc /DIR_COLORS /usr/bin/zgrep /sbin /badblocks

/bin/ domainname /etc /HOSTNAME /usr/bin/nc /sbin /kerneld

30 /bin/head /etc /mtools /usr/bin/which /sbin /fsck .ext2

/bin/kill /etc /ld.so. cache /usr/bin/grep

/bin/tar /etc /psdevtab /usr/sbin

/bin/cut /etc /mtab /usr/sbin / showmount

/bin/uname /etc /fastboot /usr/sbin / chroot

35 /bin/ping /usr/spool

/bin/ln /usr/tmp

/bin/ash

Note that the etc directory di�ers slightly from a RedHat distribution. The system startup �les /etc/rc.d

are greatly simpli�ed under Slackware.

The /lib/modules directory has been stripped for the creation of this oppy. /lib/modules/2.0.36 would

contain dynamically loadable kernel drivers (modules). Instead, all needed drivers are compiled into the kernel

for simplicity.

At some point, creating a single oppy distribution should be attempted as an exercise. This would be

most instructive to a serious system administrator. At the very least, the reader should look through all of the

commands in the bin directories and the sbin directories above and browse through the man pages of any those

that are unfamiliar.

The above �le-system comes from the morecram-1.3 package available at:

http :// www . obsidian .co.za/ psheer / morecram -1.3. tar .gz

an can be downloaded to give you a very useful rescue and setup disk.

83

CHAPTER 16. UNIX DIRECTORY LAYOUT

84

Chapter 17

Unix devices

17.1 Device �les

Unix has a beautifully consistent method of allowing programs to access hardware. Under Unix, every piece of

hardware is a �le. To demonstrate this, try view the �le /dev/hda

less -f / dev /hda

/dev/hda is not really a �le at all. When you read from it, you are actually reading directly from the �rst

physical hard disk of your machine. /dev/hda is known as a device �le, and all of them are stored under the

/dev directory.

Device �les allow access to hardware. If you have a sound card install and con�gured, you can try:

cat / dev /dsp > my_recording

Say something into your microphone and then type:

cat my_recording > / dev /dsp

Which will play out the sound through your speakers (note that this will not always work, since the recording

volume may not be set correctly, nor the recording speed.)

If no programs are currently using your mouse, you can also try:

cat / dev /mouse

If you now move the mouse, the mouse protocol commands will be written directly to your screen (it will look

like garbage). This is an easy way to see if your mouse is working.

At a lower level, programs that access device �les do so in two basic ways:

� They read and write to the device to send and retrieve bulk data. (Much like less and cat above).

� They use the C ioctl (IO Control) function to con�gure the device. (In the case of the sound card, this

might set mono versus stereo, recording speed etc.)

Because every kind of device that one can think of can be twisted to �t these two modes of operation (except

for network cards), Unix's scheme has endured since its inception and is considered the ubiquitous method of

accessing hardware.

17.2 Block and character devices

Hardware devices can generally be categorised into random access devices like disk and tape drives, and serial

devices like mouses, sound cards and terminals.

85

17.3. MAJOR AND MINOR DEVICE NUMBERS CHAPTER 17. UNIX DEVICES

Random access devices are usually accessed in large contiguous blocks of data that are stored persistently.

They are read from in discrete units (for most disks, 1024 bytes at a time). These are known as block devices.

Doing an ls -l /dev/hda shows that your hard disk is a block device by the b on the far left of the listing:

brw -r----- 1 root disk 3, 64 Apr 27 1995 / dev /hdb

Serial devices on the other hand are accessed one byte at a time. Data can be read or written only once. For

example, after a byte has been read from your mouse, the same byte cannot be read by some other program.

These are called character devices and are indicated by a c on the far left of the listing. Your /dev/dsp (Digital

Signal Processor | i.e. sound card) device looks like:

crw -r--r-- 1 root sys 14, 3 Jul 18 1994 / dev /dsp

17.3 Major and Minor device numbers

Devices are divided into sets called major device numbers. For instance, all SCSI disks are major number 8.

Further, each individual device has a minor device number like /dev/sda which is minor device 0). The major

and minor device number is what identi�es the device to the kernel. The �le-name of the device is really arbitrary

and is chosen for convenience and consistency. You can see the major and minor device number (8, 0) in the

ls listing for /dev/sda:

brw -rw ---- 1 root disk 8, 0 May 5 1998 / dev /sda

17.4 Miscellaneous devices

A list of common devices and their descriptions follows. The major numbers are shown in braces. The complete

reference for Devices is the �le /usr/src/linux/Documentation/devices.txt.

/dev/hd?? hd stands for Hard Disk, but refers here only to IDE devices | i.e. common hard disks. The �rst

letter after the hd dictates the physical disk drive:

/dev/hda (3) First drive, or primary master.

/dev/hdb (3) Second drive, or primary slave.

/dev/hdc (22) Third drive, or secondary master.

/dev/hdd (22) Fourth drive, or secondary slave.

When accessing any of these devices, you would be reading raw from the actual physical disk starting at

the �rst sector of the �rst track, sequentially, until the last sector of the last track.

Partitions1 are named /dev/hda1, /dev/hda2 etc.indicating the �rst, second etc.partition on physical drive

a.

/dev/sd?? (8) sd stands for SCSI Disk, the high end drives mostly used by servers. sda is the �rst physical

disk probed and so on. Probing goes by Scsi ID and has a completely di�erent system to IDE devices.

/dev/sda1 is the �rst partition on the �rst drive etc.

/dev/ttyS? (4) These are serial devices devices numbered from 0 up. /dev/ttyS0 is your �rst serial port

(COM1 under DOS). If you have a multi-port card, these can go up to 32, 64 etc.

/dev/psaux (10) PS/2 mouse.

/dev/mouse Is just a symlink to /dev/ttyS0 or /dev/psaux. There are other mouse devices supported also.

/dev/modem Is just a symlink to /dev/ttyS1 or whatever port your modem is on.

1With all operating systems, disk drives are divided into sections called partitions. A typical disk might have 2 to 10 partitions.

Each partition acts as a whole disk on its own, giving the e�ect of having more than one disk. For instance, you might have Windows

installed on one partition, and Linux installed on another.

86

CHAPTER 17. UNIX DEVICES 17.4. MISCELLANEOUS DEVICES

/dev/cua? (4) Identical to ttyS? but now fallen out of use.

/dev/fd? (2) Floppy disk. fd0 is equivalent to your A: drive and fd1 your B: drive. The fd0 and fd1 devices

auto-detect the format of the oppy disk, but you can explicitly specify a higher density by using a device

name like /dev/fd0H1920 which gives you access to 1.88MB formatted 3.5 inch oppies.

See Section 18.3 on how to format these devices.

Floppy devices are named /dev/fdlmnnnn

l
0 A: drive

1 B: drive

m
d

\double density", \360kB" 5.25 inch

h
\high density", \1.2MB" 5.25 inch

q
\quad density" 5.25 inch

D
\double density", \720kB" 3.5 inch

H
\high density", \1.44MB" 3.5 inch

E
Extra density 3.5 inch.

u
Any 3.5 inch oppy. Note that u is now replacing D, H and E, thus

leaving it up to the user to decide if the oppy has enough density

for the format.

nnnn
360 410 420 720 800

820 830 880 1040

1120 1200 1440 1476

1494 1600 1680 1722

1743 1760 1840 1920

2880 3200 3520 3840

The size of the format. With D, H and E, 3.5 inch oppies only have

devices for the sizes that are likely to work. For instance there is no

/dev/fd0D1440 because double density disks won't manage 1440kB.

/dev/fd0H1440 and /dev/fd0H1920 are probably the ones you are

most interested in.

/dev/par? (6) Parallel port. /dev/par0 is your �rst parallel port or LPT1 under DOS.

/dev/lp? (6) Line printer. Identical to /dev/par?.

/dev/random Random number generator. Reading from this device give pseudo random numbers.

/dev/st? (9) SCSI tape. SCSI backup tape drive.

/dev/zero (1) Produces zero bytes, and as many of them us you need. This is useful if you need to generate a

block of zeros for some reason. Use dd (see below) to read a speci�c number of zeros.

/dev/null (1) Null device. Reads nothing. Anything you write to the device is discarded. This is very useful

for discarding output.

/dev/pd? parallel port IDE disk.

/dev/pcd? parallel port ATAPI CDROM.

/dev/pf? parallel port ATAPI disk.

/dev/sr? SCSI CDROM.

/dev/fb? (29) Frame bu�er. This represents the kernels attempt at a graphics driver.

/dev/cdrom Is just a symlink to /dev/hda, /dev/hdb or /dev/hdc. It also my be linked to your SCSI CDROM.

/dev/ttyI? ISDN Modems.

/dev/tty? (4) Virtual console. This is the terminal device for the virtual console itself and is numbered

/dev/tty1 through /dev/tty63.

87

17.5. DD AND TRICKS CHAPTER 17. UNIX DEVICES

/dev/tty?? (3) and /dev/pty?? (2) Other TTY devices used for emulating a terminal. These are called

pseudo-TTY 's and are identi�ed by two lower case letters and numbers, such as ttyq3. To non-developers,

these are mostly of theoretical interest.

17.5 The dd command and tricks with block devices

dd probably originally stood for disk dump. It is actually just like cat except it can read and write in discrete
blocks. It essentially reads and writes between devices while converting the data in some way. It is generally
used in one of these ways:

dd if =< in-file > of =< out -file > [bs =< block -size >] \

[count =< number -of- blocks >] [seek =< output -offset >] \

[skip =< input -offset >]

5 dd if =< in-file > [bs =< block -size >] [count =< number -of- blocks >] \

[skip =< input -offset >] > < outfile >

dd of =< out -file > [bs =< block -size >] [count =< number -of- blocks >] \

[seek =< output -offset >] < < infile >

dd works by specifying an input �le and an output �le with the if= and of= options. If the of= option is

omitted, then dd writes to stdout. If the if= option is omitted, then dd reads from stdin.

To create a new RedHat boot oppy, �nd the boot.img �le on ftp.redhat.com, and with a new oppy, do:

dd if=boot .img of =/ dev /fd0

This will write the raw disk image directly to the oppy disk.

If you have ever tried to repartition a Linux disk back into a DOS/Windows disk, you will know that

DOS/Windows FDISK has bugs in it that prevent it from recreating the partition table. A quick:

dd if =/ dev /zero of =/ dev /hda bs =1024 count =10240

will write zeros to the �rst ten megabytes of your �rst IDE drive. This will wipe out the partition table as

well as any �le-system and give you a \barnd new" disk.

To zero a oppy disk is just as easy:

dd if =/ dev /zero of =/ dev /fd0 bs =1024 count =1440

If you have two IDE drives that are of identical size, provided that you are sure that they contain no bad

sectors, you can do

dd if =/ dev /hdc of =/ dev /hdd

to copy the entire disk and avoid having to install an operating system from scratch. It doesn't matter what

is on the original (Windows, Linux or whatever) since each sector is identically duplicated, the new system will

work perfectly.

tar can be used to backup to any device. Consider periodic backups to an ordinary IDE drive instead of a

tape. Here we backup to the secondary slave:

tar - cvzf / dev /hdd / bin / boot / dev / etc / home / lib / sbin / usr / var

tar can also backup accross multiple oppy disks:

tar - cvMf / dev /fd0 / home /simon

88

CHAPTER 17. UNIX DEVICES 17.6. CREATING DEVICES

If you don't want to see any program output, just append > /dev/null to the command. For example, we

aren't often interested in the output of make2, only the error messages:

make > / dev /null

And,

make >& / dev /null

also absorbs all error messages. /dev/null �nds enumerable uses in shell scripting to suppress the output of

a command or feed a command dummy (empty) input. /dev/null is a safe �le from a security point of view,

and is often used where a �le is required for some feature in some con�guration script, where you would like the

particular feature disabled. For instance, specifying the users shell to /dev/null inside the password �le will

certainly prevent insecure use of a shell, and is an explicit way of saying that that account does not allow shell

logins.

/dev/null can also be used to create a �le containing nothing:

cat / dev /null > myfile

or alternatively, to create a �le containing only zeros, try

dd if =/ dev /zero bs =1024 count =< number -of-kilobytes > > myfile

17.6 Creating devices with mknod and /dev/MAKEDEV

Although all devices are listed in the /dev directory, you can create a device anywhere in the �le system using

the mknod command:

mknod [- m < mode >] < file -name > [b|c] < major -number > < minor -number >

The letters b and c are for creating a block or character device respectively.

To demonstrate, try

mknod -m 0600 ~/ my-floppy b 2 0

ls - al / dev /fd0 ~/ my-floppy

my-floppy can be used just like /dev/fd0

Note carefully the mode (i.e. the permissions) of /dev/fd0. /dev/fd0 should be readable and writable only

to root and to users belonging to the floppy group, since we obviously don't want an arbitrary user to be able

to login (remotely) and write over a oppy disk.

In fact, this is the reason for having devices represented as �les in the �rst place. Unix�les naturally support

group access control, and therefore so also do devices.

To create devices that are missing from your /dev directory (some esoteric devices will not be present by de-

fault). Simply look up the device's major and minor number in /usr/src/linux/Documentation/devices.txt

and use the mknod command. This is however somewhat tedious, and the script /dev/MAKEDEV is usually present

for convenience. You must be in the /dev directory before you run this script.

Typically example usage of MAKEDEV is,

cd / dev

./ MAKEDEV -v fd0

./ MAKEDEV -v fd1

2make will be discussed later.

89

17.6. CREATING DEVICES CHAPTER 17. UNIX DEVICES

to create a complete set of oppy disk devices.

The man page for MAKEDEV contains more details, and explains the following:

Note that programs giving the error \ENOENT: No such �le or directory" normally means that the

device �le is missing, whereas \ENODEV: No such device" normally means the kernel does not have

the driver con�gured or loaded.

90

Chapter 18

Partitions, �le-systems, formatting and

mounting

18.1 The structure of a physical disk

Cylinders, heads and sectors

Physical disks are divided into partitions1. Information as to how the disk is partitioned up, is stored in a

partition table, which is a small area of the disk separate from the partitions themselves.

The physical drive itself is usually comprised of several actual disks of which both sides are used. The sides

are labelled 0, 1, 2, 3 etc. and are also called heads because there is a magnetic head per side to do the actual

reading and writing. Each side/head has tracks and each track is divided into segments called sectors. Each

sector typically holds 512 bytes. The total amount of space on the drive in bytes is therefore:

512 * (sectors-per-track) * (tracks-per-side) * (number-of-sides).

A single track and all the tracks of the same diameter (on all the sides) are called a cylinder. Disks are

normally talked about in terms of \cylinders and sectors" instead of \sides, tracks and sectors". Partitions are

(usually) divided along cylinder boundaries. Hence disks do not have arbitrarily sized partitions; rather the size

of the partition must be a multiple of the amount of data held in a single cylinder. Partitions therefore have a

de�nite inner and outer diameter.

LBA Mode

The above system is quite straight forward except for the curious limitation that partition tables have only 10

bits to store the partition's cylinder o�set. This means that no disk can have more than 1024 cylinders. This was

overcome by multiplying up the number of heads in software to reduce the number of cylinders2 hence portraying

a disk of impossible proportions. The user however need never be concerned that the physical disk is completely

otherwise.

Extended partitions

The partition table has room for only four partitions. To have more partitions, one of these four partitions

can be divided into many smaller partitions, called logical partitions. The original four are then called primary

partitions. If a primary partition is subdivided in this way, then it is know as an extended primary or extended

partition. Typically, the �rst primary partition will be small (/dev/hda1, say). The second primary partition

will �ll the rest of the disk as an extended partition (/dev/hda2, say). /dev/hda3 and /dev/hda4's entries in

the partition table will be left blank. The extended partition can be subdivided repeatedly to give /dev/hda5,

/dev/hda6 etc.

1See footnote on page 86
2Called LBA (Large Block Addressing) mode

91

18.2. PARTITIONING CHAPTER 18. PARTITIONING, FORMATTING AND MOUNTING

18.2 Partitioning a new disk

A new disk will have no partition information. Typing fdisk will start an interactive partitioning utility.

fdisk / dev /hda

fdisks your primary master.

What follows is an example of the partitioning of a new hard drive. Most distributions these days have a

simpler graphical system for creating partitions, hence using fdisk will not be necessary at installation time.

However, adding a new drive or transferring/copying a Linux system to new hardware will require partitioning.

On Unix, each partition has its own directory. Hence �les in one directory might be stored on a di�erent

disk or a di�erent partition to �les in another directory. Typically, the /var directory (and all sub-directories

beneath it) will be stored on a separate partition from the /usr directory (and all sub-directories beneath it).

Table 18.1 gives a general guideline as to how a server machine should be set up (with home computers, you

can be far more liberal | most home PC's can do with a swap and / partition only.). When installing a new

server, you distribution should allow you to customise your partitions to match this table.

Directory Size

(Megabytes)

Why?

swap Twice the

size of your

RAM

This is where memory gets drawn from when you run out. It gives programs the

impression that you have more RAM than you actually do, by swapping data in

and out of this partition. Its slow, but it works nicely when there are a lot of

programs running that are idle for most of the time, allowing their memory can be

swapped to disk.

Swap partitions cannot be over 128MB, but you can have many of them.

/var 100{1000 Here is variable data, like log �les, mail spool �les and your web proxy cache. If you

are going to be using a web cache, either store the stu� in a separate partition/disk

or make your /var partition huge. Also, Log �les can grow to enormous sizes when

there are problems and you wouldn't want a full /var partition to make the rest

of your disk full. This is why it goes in its own partition.

/tmp 50 Here is temporary data. Programs access this frequently and need it to be fast. It

goes in a separate partition because programs really need to create a temporary

�le sometimes, and this should not be e�ected by other partitions becoming full.

/usr 500{1500 Here is your distribution (Debian, RedHat, Mandrake etc.). It can be mounted

readonly. If you have a disk whose write access can physically be disabled (like

some SCSI drives), then you can put /usr on a separate drive. This will make for

a much more secure system. Since /usr is stock standard, this is the partition you

can most a�ord to loose.

/home Remainder

of disk

Here are your users' home directories, and any local data that this site serves (like

FTP �les or web pages). This is data that is most likely to �ll up the partition by

accident and is also the most important data to the site.

/ 50{100 Anything not in any of the other directories is directly under your / directory. These

are your /bin (5MB), /boot (3MB), /dev (100kb), /etc (4MB), /lib (20MB),

/mnt (0), /proc (0) and /sbin (4MB) directories. They are essential for the system

to startup, and contain minimal utilities for recovering the other partitions in an

emergency.

Table 18.1: What directories should have their own partitions, and their partitions' sizes

If you have another operating system already installed in the �rst partition, you can type p and might see:

Command (m for help): p

Disk / dev /hda : 255 heads , 63 sectors , 788 cylinders

Units = cylinders of 16065 * 512 bytes

5

Device Boot Start End Blocks Id System

92

CHAPTER 18. PARTITIONING, FORMATTING AND MOUNTING 18.2. PARTITIONING

/dev /hda1 1 312 2506108+ c Win95 FAT32 (LBA)

In which case, you can just start adding partitions after it.

If you have a SCSI disk the exact same procedure applies. The only di�erence is that /dev/hd? changes to

/dev/sd?.

[root@cericon / root]# fdisk / dev /hda

Device contains neither a valid DOS partition table , nor Sun or SGI disklabel

Building a new DOS disklabel . Changes will remain in memory only ,

until you decide to write them . After that , of course , the previous

5 content won 't be recoverable .

Command (m for help): p

10 Disk / dev /hda : 255 heads , 63 sectors , 788 cylinders

Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System

15 Command (m for help): n

Command action

e extended

p primary partition (1-4)

p

20 Partition number (1-4): 1

First cylinder (1-788, default 1): 1

Last cylinder or + size or + sizeM or + sizeK (1-788, default 788): +80 M

Command (m for help): n

25 Command action

e extended

p primary partition (1-4)

e

Partition number (1-4): 2

30 First cylinder (12-788, default 12): 12

Last cylinder or + size or + sizeM or + sizeK (12-788, default 788): 788

Command (m for help): n

Command action

35 l logical (5 or over)

p primary partition (1-4)

l

First cylinder (12-788, default 12): 12

Last cylinder or + size or + sizeM or + sizeK (12-788, default 788): +64 M

40

Command (m for help): n

Command action

l logical (5 or over)

p primary partition (1-4)

45 l

First cylinder (21-788, default 21): 21

Last cylinder or + size or + sizeM or + sizeK (21-788, default 788): +100 M

Command (m for help): n

50 Command action

l logical (5 or over)

p primary partition (1-4)

l

First cylinder (34-788, default 34): 34

55 Last cylinder or + size or + sizeM or + sizeK (34-788, default 788): +200 M

Command (m for help): n

Command action

l logical (5 or over)

60 p primary partition (1-4)

l

First cylinder (60-788, default 60): 60

Last cylinder or + size or + sizeM or + sizeK (60-788, default 788): +1500 M

65 Command (m for help): n

Command action

93

18.3. FORMATTING DEVICES CHAPTER 18. PARTITIONING, FORMATTING AND MOUNTING

l logical (5 or over)

p primary partition (1-4)

l

70 First cylinder (252-788, default 252): 252

Last cylinder or + size or + sizeM or + sizeK (252-788, default 788): 788

Command (m for help): l

75 0 Empty 16 Hidden FAT16 61 SpeedStor a6 OpenBSD

[...]

8 AIX 4d QNX4 .x 82 Linux swap db CP/M / CTOS / .

9 AIX bootable 4e QNX4 .x 2nd part 83 Linux e1 DOS access

[...]

80 12 Compaq diagnost 56 Golden Bow a5 BSD /386 ff BBT

14 Hidden FAT16 <3 5 c Priam Edisk

Command (m for help): t

Partition number (1-9): 5

85 Hex code (type L to list codes): 82

Changed system type of partition 5 to 82 (Linux swap)

Command (m for help): a

Partition number (1-10): 1

90

Command (m for help): p

Disk / dev /hda : 255 heads , 63 sectors , 788 cylinders

Units = cylinders of 16065 * 512 bytes

95

Device Boot Start End Blocks Id System

/dev /hda1 * 1 11 88326 83 Linux

/dev /hda2 12 788 6241252+ 5 Extended

/dev /hda5 12 20 72261 82 Linux swap

100 /dev /hda6 21 33 104391 83 Linux

/dev /hda7 34 59 208813+ 83 Linux

/dev /hda8 60 251 1542208+ 83 Linux

/dev /hda9 252 788 4313421 83 Linux

105 Command (m for help): w

The partition table has been altered !

Calling ioctl () to re-read partition table .

Syncing disks .

110

WARNING : If you have created or modified any DOS 6. x

partitions , please see the fdisk manual page for additional

information .

For the above partition, the kernel will give the following information at boot time:

Partition check :

hda : hda1 hda2 < hda5 hda6 hda7 hda8 hda9 >

The < . . . > shows that partition hda2 is extended and is subdivided into �ve smaller partitions.

18.3 Formatting devices, partitions and oppies

Disk drives are usually read in blocks of 1024 bytes (two sectors). From the point of view of anyone accessing

the device, blocks are stored consecutively | there is no need to think about cylinders or heads | so that any

program can read the disk as though it were a linear tape. Try

less / dev /hda1

less -f / dev /hda1

Now a directory structure with �les of arbitrary size has to be stored in this contiguous partition. This poses

the problem of what to do with a �le that gets deleted and leaves data \hole" in the partition, or a �le that has

to be split into parts because there is no single contiguous space big enough to hold it. Files also have to be

94

CHAPTER 18. PARTITIONING, FORMATTING AND MOUNTING 18.3. FORMATTING DEVICES

indexed in such a way that they can be found quickly (consider that there can easily be 10000 �les on a system),

and Unix's symbolic/hard links and devices �les also have to be stored.

To cope with this complexity, operating systems have a format for storing �les called the �le-system (fs).

Like MSDOS's FAT �le-system or Windows' FAT32 �le-system, Linux has a �le-system called the 2nd extended

�le-system, or ext23.

mke2fs

To create a �le-system on a blank partition, the command mkfs or one of its variants is used. To create a Linux

ext2 �le-system on the �rst partition of the primary master:

mkfs -t ext2 -c / dev /hda1

or, alternatively

mke2fs -c / dev /hda1

The -c option means to check for bad blocks by reading through the entire disk �rst. This is a read-only

check and will cause unreadable blocks to be agged as such and not be used. To do a full read-write check,

use the badblocks command. This will write to and verify every bit in that partition. Although the -c option

should always be used on a new disk, doing a full read-write test is probably pedantic. For the above partition,

this would be:

badblocks -o blocks -list .txt -s -w / dev /hda1 88326

mke2fs -l blocks -list .txt / dev /hda1

Formatting oppies and removable drives

New kinds of removable devices are being released all the time. Whatever the device, the same formatting

procedure is used. Most are IDE compatible, which means you can access them through /dev/hd?.

The following examples are a parallel port IDE disk drive, a parallel port ATAPI CDROM drive, a parallel

port ATAPI disk drive, and your \A:" oppy drive respectively:

mke2fs -c / dev /pda1

mke2fs -c / dev /pcd0

mke2fs -c / dev /pf0

mke2fs -c / dev /fd0

Actually, using an ext2 �le-system on a oppy drive wastes a lot of space. Rather use an MSDOS �le-system

which has less overhead, and can be read by anyone (see Section 18.3).

You often will not want to be bothered with partitioning a device that is only going to have one partition

anyway. In this case you can use the whole disk as one partition. An example is a removable IDE drive as a

primary slave4:

mke2fs -c / dev /hdb

Creating MSDOS oppies

Accessing �les on MSDOS/Windows oppies is explained in Section 4.13. The command mformat A: will format

a oppy, but this command merely initialises the �le-system, it does not check for bad blocks or do the low level

formatting necessary to reformat oppies to odd storage sizes.

3There are three other �le-systems which may soon become standards. These are SGI's XFS, ext3fs, and reiserfs. The purpose of

these is to support fast and reliable recovery in the event of a power failure. This is called journaling because it works by pre-writing

disk writes to a separate table.
4
LS120 disks and Jazz drives as well as removable IDE brackets, are commercial examples.

95

18.4. MOUNTING STUFF CHAPTER 18. PARTITIONING, FORMATTING AND MOUNTING

There is a command called superformat from the fdutils package5 that formats a oppy in any way that

you like. It veri�es that each track is working properly and compensates for variations between the mechanics of

di�erent oppy drives. To format a 3.5 inch 1440kB, 1680kB or 1920kB oppy respectively, do:

cd / dev

./ MAKEDEV -v fd0

superformat / dev / fd0H1440

superformat / dev / fd0H1690

5 superformat / dev / fd0H1920

Note that these are \long �lename" oppies (VFAT), not old 13 character �lename MSDOS oppies.

Most would have only ever used a 3.5 inch oppy as a \1.44MB" oppy. In fact the disk media and magnetic

head can write much more densely than this speci�cation, allowing 24 sectors per track to be stored instead of

the usual 18. This is why there is more than one device �le for the same drive. Some inferior disks will however

give errors when trying to format that densely | superformat will show errors when this happens.

See page 87 for how oppy devices are named, and their many respective formats.

mkswap, swapon and swapoff

The mkswap command formats a partition to be used as a swap device. For our disk:

mkswap -c / dev /hda5

-c has the same meaning as previously | to check for bad-blocks.

Once it is formatted, the kernel can be signalled to use that partition as a swap partition with

swapon / dev /hda5

and to stop usage,

swapoff / dev /hda5

Swap partitions cannot be larger than 128MB, although you can have as many of them as you like. You can

swapon many di�erent partitions simultaneously.

18.4 mounting partitions, oppies, CDROM drives and other devices

(i.e accessing the �lesystem on an arbitrary disk)

The question of how to access �les on an arbitrary disk (without C:, D: etc. notation, of course) is answered here.

In Unix, there is only one root �le-system that spans many disks. Di�erent directories may actually exist on

a di�erent physical disk.

To bind a directory to a physical device (like a par-

tition or a CDROM), in order that the device's �le-

system can be read, is called mounting the device.

The mount device usually is used,

mount [- t < fstype >] [- o < option >] < device > < directory >

umount [- f] [device > | < directory >]

5You may have to �nd this package on the Internet. See Chapter ?? for how to compile and install source packages.

96

CHAPTER 18. PARTITIONING, FORMATTING AND MOUNTING 18.5. REPAIRING FILE-SYSTEMS

The -t option tells what kind of �le-system it is, and can often be omitted since Linux can auto-detect

most �le-systems. <fstype> can be one of adfs, affs, autofs, coda, coherent, devpts, efs, ext2, hfs, hpfs,

iso9660, minix, msdos, ncpfs, nfs, ntfs, proc, qnx4, romfs, smbfs, sysv, ufs, umsdos, vfat, xenix or xiafs.

The most common ones are discussed below. The -o option is not usually used. See the mount(8) page for all

possible options.

Put your distribution CDROM disk into your CDROM drive and mount it with,

ls / mnt /cdrom

mount -t iso9660 -o ro / dev /hdb / mnt /cdrom

(Your CDROM might be /dev/hdc or /dev/hdd however | in this case you should make a soft link

/dev/cdrom pointing to the correct device.) Now cd to your /mnt/cdrom directory. You will notice that it

is no longer empty, but \contains" the CDROM's �les. What is happening is that the kernel is redirecting all

lookups from the directory /dev/cdrom to read from the CDROM disk. You can browse around these �les as

thought they were already copied onto your hard drive. This is what makes Unix cool.

When you are �nished with the CDROM unmount it with,

umount / dev /hdb

eject / dev /hdb

Instead of using mtools, you could mount the oppy disk with:

mkdir / mnt / floppy

mount -t vfat / dev /fd0 / mnt /floppy

or, for older MSDOS oppies:

mkdir / mnt / floppy

mount -t msdos / dev /fd0 / mnt /floppy

Before you eject the oppy, it is essential to

umount / dev /fd0

in order that cached data is committed to the disk. Failing to umount a oppy before ejecting will probably

cause its �le-system to be corrupted.

mounting Windows and NT partitions

Mounting a Windows partition can also be done with the vfat �le-system, and NT partitions (read only) with

the ntfs �le-system. VAT32 is auto-detected and supported. For example,

mkdir / windows

mount -t vfat / dev /hda1 / windows

mkdir / nt

mount -t ntfs / dev /hda2 / nt

18.5 Checking and repairing �le-systems with fsck

fsck stands for �le system check. fsck scans the �le-system, reporting and �xing errors. Errors would normally

occur because the kernel halted before umounting the �le-system. In this case, it may have been in the middle

of a write operation which left the �le-system in an incoherent state. This usually would happen because of a

power failure.

It is used as follows:

97

18.6. AUTOMATIC MOUNTING WITH /ETC/FSTABCHAPTER 18. PARTITIONING, FORMATTING AND MOUNTING

fsck [- V] [- a] [- t < fstype >] < device >

-V means to produce verbose output. -a means to check the �le-system non-interactively | meaning to not

ask the user before trying to make any repairs. This is what you would normally do with Linux if you don't

know a whole lot about the ext2 �le-system:

fsck -a -t ext2 / dev /hda1

although the -t option can be omitted as Linux auto-detects the �le-system. Note that you cannot run fsck

on a mounted �le-system.

fsck actually just runs a program speci�c to that �le-system. In the case of ext2, the command e2fsck (also

known as fsck.ext2) is run. Do a e2fsck(8) to get exhaustive details.

18.6 Automatic mounting at boot time with /etc/fstab

Above, manual mounts are explained for new and removable disks. It is of course necessary for �le-systems

to be automatically mounted at boot time. What gets mounted and how is speci�ed in the con�guration �le

/etc/fstab.

It will usually look something like this for the disk we partitioned above:

/dev /hda1 / ext2 defaults 1 1

/dev /hda6 /tmp ext2 defaults 1 2

/dev /hda7 /var ext2 defaults 1 2

/dev /hda8 /usr ext2 defaults 1 2

5 /dev /hda9 /home ext2 defaults 1 2

/dev /hda5 swap swap defaults 0 0

/dev /fd0 /mnt /floppy auto noauto 0 0

/dev /cdrom /mnt /cdrom iso9660 noauto ,ro 0 0

none /proc proc defaults 0 0

10 none /dev /pts devpts mode =0622 0 0

For the moment we are interested in the �rst six lines only. The �rst three �elds (columns) dictates the

partition, the directory where it is to be mounted, and the �le-system type respectively. The fourth �eld gives

options (the -o option to mount).

The �fth �eld tells whether the �le-system contains real �les. It is used by the dump to decide if it can should

be backed up. This is not commonly used.

The last �eld tells the order in which an fsck should be done on the partitions. The / partition should come

�rst with a 1, and all other partitions should come directly after. By placing 2's everywhere else, it ensures that

partitions on di�erent disks can be checked in parallel, which speeds things up slightly at boot time.

The floppy and cdrom entries allow you to use an abbreviated form of the mount command. mount will just

look up the corresponding directory and �le-system type from /etc/fstab. Try

mount / dev /cdrom

proc is a kernel info database that looks like a �le-system. For example /proc/cpuinfo is not any kind of

�le that actually exists on a disk somewhere. Try cat /proc/cpuinfo.

Many programs use /proc to get information on the status and con�guration of your machine. More on this

will be discussed in Section ??.

The devpts �le-system is another pseudo-�le-system that generates terminal master/slave pairs for programs.

This is mostly of concern to developers.

98

CHAPTER 18. PARTITIONING, FORMATTING AND MOUNTING 18.7. RAM AND LOOPBACK

18.7 RAM and loopback devices

A RAM device is a block device that can be used as a disk, but really points to a physical area of RAM.

A loopback device is a block device that can be used as a disk, but really points to an ordinary �le somewhere.

If your imagination isn't already running wild, consider creating a oppy disk with �le-system, �les and all,

without actually having a oppy disk; and then writing the results to a �le that can be dd'd to a oppy at any

time. You can do this with loopback and RAM devices.

You can have a whole other Linux system inside a 500MB �le on a Windows partition and boot into it |

thus obviating having to repartition a Windows machine just to run Linux.

Formatting a oppy inside a �le

The operations are quite trivial. To create an MSDOS oppy inside a 1440kB �le, do:

dd if =/ dev /zero of =~/ file - floppy count =1440 bs =1024

losetup / dev / loop0 ~/ file - floppy

mke2fs / dev /loop0

mkdir ~/ mnt

5 mount / dev /loop0 ~/ mnt

ls - al ~/ mnt

When you are �nished copying the �les that you want into /mnt, merely

umount ~/ mnt

losetup -d / dev /loop0

To dump the �le-system to a oppy,

dd if =~/ file - floppy of =/ dev /fd0 count =1440 bs =1024

A similar procedure for RAM devices

dd if =/ dev /zero of =/ dev /ram0 count =1440 bs =1024

mke2fs / dev /ram0

mkdir ~/ mnt

mount / dev /ram0 ~/ mnt

5 ls - al ~/ mnt

When you are �nished copying the �les that you want into /mnt, merely

umount ~/ mnt

To dump the �le-system to a oppy or �le respectively:

dd if =/ dev /ram0 of =/ dev /fd0 count =1440 bs =1024

dd if =/ dev /ram0 of =~/ file - floppy count =1440 bs =1024

99

18.7. RAM AND LOOPBACK CHAPTER 18. PARTITIONING, FORMATTING AND MOUNTING

100

Chapter 19

Trivial introduction to C

The C programming language was invented for the purposes of writing an operating system that could be

recompiled (ported) to di�erent hardware platforms (di�erent CPU's). It is hence also the �rst choice for writing

any kind of application that has to communicate eÆciently with the operating system.

Many people who don't program in C very well think of C as an arbitrary language out of many. This

point should be made at once: C is the fundamental basis of all computing in the world today. Unix, Microsoft

Windows, oÆce suites, web browsers and device drivers are all written in C. 99% of your time spent at a computer

is probably spent inside a C application1.

There is also no replacement for C. Since it ful�ls its purpose without much aw, there will never be a need

to replace it. Other languages may ful�l other purposes, but C ful�ls its purpose most adequately. For instance,

all future operating systems will probably be written in C for a long time to come.

It is for these reasons that your knowledge of Unix will never be complete until you can program in C.

19.1 C fundamentals

19.1.1 The simplest C program

A simple C program is:

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

printf (" Hello World !\n");

return 3;

}

Save this program in a �le hello.c. You can compile this program with the command

gcc - Wall -o hello hello .c

the -o hello option tells gcc2 to produce the binary �le hello instead of the default binary �le name a.out3.

The -Wall option means to report all Warnings during the compilation. This is not strictly necessary but most

helpful for correcting possible errors in your programs.

Then run the program with

./ hello

1C++ is also quite popular. It is, however, not as fundamental to computing, although it is more suitable in many situations.
2GNU C Compiler. cc on other Unix systems.
3Called a.out out of historical reasons.

101

19.1. C FUNDAMENTALS CHAPTER 19. TRIVIAL INTRODUCTION TO C

Previously you should have familiarised yourself with bash functions (See Section 6.6). In C all code is inside

a function. The �rst function to be called (by the operating system) in the main function.

Type echo $? to see the return code of the program. You will see it is 3, indicating the return value of the

main function.

Other things to note are the " on either side of the string to be printed. Quotes are required around string

literals. Inside a string literal nn escape sequence indicates a newline character. ascii(7) shows some other

escape sequences. You can also see a proliferance of ; everywhere in a C program. Every statement in C is

separated by a ; unlike with shell scripts where a ; is optional.

Now try:

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

printf (" number %d, number %d\n ", 1 + 2, 10);

exit (3);

}

printf may be thought of as the command to send output to the terminal. It is also what is known as a

standard C library function. In other words, it is speci�ed that a C implementation should always have the

printf function and that it should behave in a certain way.

The %d indicates that a decimal should go in at that point in the text. The number to be substituted will be

the �rst argument to the printf function after the string literal | i.e. the 1 + 2. The next %d is substituted

with the second argument | i.e. the 10. The %d is known as a format speci�er. It essentially converts an integer

number into a decimal representation.

19.1.2 Variables and types

With bash you could use a variable anywhere anytime, and the variable would just be blank if it was never used

before. In C you have to tell the compiler what variables you are going to need before each block of code.

This is done with a variable declaration:

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

int x;

int y;

x = 10;

y = 2:

10 printf (" number %d, number %d\n", 1 + y, x);

exit (3);

}

The int x is a variable declaration. It tells the program to reserve space for one integer variable and that it

will later be referred to as x. int is the type of the variable. x = 10 assigned the variable with the value 10.

There are types for each of the kind of numbers you would like to work with, and format speci�ers to convert

them for printing:

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

char a;

short b;

int c;

long d;

10 float e;

double f;

long double g;

102

CHAPTER 19. TRIVIAL INTRODUCTION TO C 19.1. C FUNDAMENTALS

a = ' A';

b = 10;

15 c = 10000000;

d = 10000000;

e = 3.14159;

f = 10 e300 ;

g = 10 e300 ;

20 printf ("% c, % hd , % d, % ld , % f, % f, % Lf\n", a, b, c, d, e, f, g);

exit (3);

}

You will notice that %f is used for both floats and doubles. This is because floats are always converted

to doubless during an operating like this. Also try replacing %f with %e to print in exponential notation | i.e.

less signi�cant digits.

19.1.3 Functions

Functions are implemented as follows:

include < stdlib .h>

include < stdio .h>

void mutiply_and_print (int x, int y)

5 {

printf ("% d * % d = % d\n", x, y, x * y);

}

int main (int argc , char * argv [])

10 {

mutiply_and_print (30, 5);

mutiply_and_print (12, 3);

exit (3);

}

Here we have a non-main function called by the main function. The function is �rst declared with

void mutiply_and_print (int x, int y)

This declaration states the return value of the function (void for no return value); the function name

(mutiply and print) and then the arguments that are going to be passed to the function. The numbers passed

to the function are given their own names, x and y, and are converted to the type of x and y before being passed

to the function | in this case, int and int. The actual C code of which the function is comprised goes between

curly braces f and g.

In other word, the above function is the same as:

void mutiply_and_print ()

{

int x;

int y;

5 x = < first -number -passed >

y = < second - number -passed >

printf ("% d * % d = % d\n", x, y, x * y);

}

(Note that this is not permissable C code.)

19.1.4 for, while, if and switch statements

As with shell scripting, we have the for, while and if statements:

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

103

19.1. C FUNDAMENTALS CHAPTER 19. TRIVIAL INTRODUCTION TO C

int x;

x = 10;

10 if (x == 10) {

printf (" x is exactly 10\ n");

x++;

} else if (x == 20) {

printf (" x is not equal to 20\ n");

15 } else {

printf (" No , x is not equal to 10 or 20\ n");

}

if (x > 10) {

20 printf (" Yes , x is more than 10\ n");

}

while (x > 0) {

printf (" x is %d\n", x);

25 x = x - 1;

}

for (x = 0; x < 10; x++) {

printf (" x is %d\n", x);

30 }

switch (x) {

case 9:

printf (" x is nine \n");

35 break ;

case 10:

printf (" x is ten \n");

break ;

case 11:

40 printf (" x is eleven \n");

break ;

default :

printf (" x is huh ?\n");

break ;

45 }

return 0;

}

It is easy to see the format that these take, although they are vastly di�erent from shell scripts. C code works

in statement blocks between curly braces, in the same way that shell scripts have do's and done's.

Note that with most programming languages when we want to add 1 to a variable we have to write, say x =

x + 1. In C the abbreviation x++ is used, meaning to increment a variable by 1.

The for loop takes three statements between (. . .). These are, a statement to start things o�, a comparison,

and a statement to be executed everytime after the statement block. The statement block after the for is

executed until the comparison is untrue.

The switch statement is like case in shell scripts. switch considers the argument inside its (. . .) and

decides which case line to jump to. In this case it will obviously be printf ("x is tennn"); because x was 10

when the previous for loop exited. The break tokens means we are done with the switch statement and that

execution should continue from Line 46.

Note that in C the comparison == is used instead of =. = means to assign a value to a variable, while == is

an equality operator.

19.1.5 Strings, arrays and memory allocation

You can de�ne a list of numbers with:

int y[10];

This is called an array :

104

CHAPTER 19. TRIVIAL INTRODUCTION TO C 19.1. C FUNDAMENTALS

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

int x;

int y[10];

for (x = 0; x < 10; x++) {

y[x] = x * 2;

10 }

for (x = 0; x < 10; x++) {

printf (" item %d is %d\n", x, y[x]);

}

return 0;

15 }

If an array is of type character then it is called a string :

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

int x;

char y[11];

for (x = 0; x < 10; x++) {

y[x] = 65 + x * 2;

10 }

for (x = 0; x < 10; x++) {

printf (" item %d is %d\n", x, y[x]);

}

y[10] = 0;

15 printf (" string is %s\n", y);

return 0;

}

Note that a string has to be null-terminated. This means that the last character must be a zero. The code

y[10] = 0 sets the eleventh item in the array to zero. This also means that strings need to be one char longer

than you would think.

(Note that the �rst item in the array is y[0], not y[1], like some other programming languages.)

In the above example, the line char y[11] reserved 11 bytes for the string. Now what if you want a string of

100000 bytes? C allows you to allocate memory for your 100k which means requesting memory from the kernel.

Any non-trivial program will allocate memory for itself and there is no other way of getting getting large blocks

of memory for your program to use. Try:

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

int x;

char *y;

y = malloc (11);

printf ("% ld\n", y);

10 for (x = 0; x < 10; x++) {

y[x] = 65 + x * 2;

}

y[10] = 0;

printf (" string is %s\n", y);

15 free (y);

return 0;

}

The declaration char *y would be new to you. It means to declare a variable (a number) called y that points

to a memory location. The * (asterix) in this context means pointer. Now if you have a machine with perhaps

256 megabytes of RAM + swap, then y will have a range of about this much. The numerical value of y is also

printed with printf ("%ldnn", y);, but is of no interest to the programmer.

105

19.1. C FUNDAMENTALS CHAPTER 19. TRIVIAL INTRODUCTION TO C

When �nished using memory it should be given back to the operating system. This is done with free.

Programs that don't free all the memory they allocate are said to leak memory.

Allocating memory often requires you to perform a calculation to determine the amount of memory required.

In the above case we are allocating the space of 11 char's. Since each char is really a single byte, this presents

no problem. But what if we were allocating 11 int's? An int on a PC is 32 bits | four bytes. To determine

the size of a type, we use the sizeof keyword:

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

int a;

int b;

int c;

int d;

10 int e;

int f;

int g;

a = sizeof (char);

b = sizeof (short);

15 c = sizeof (int);

d = sizeof (long);

e = sizeof (float);

f = sizeof (double);

g = sizeof (long double);

20 printf ("% d, % d, % d, % d, % d, % d, % d\n", a, b, c, d, e, f, g);

return 0;

}

Here you can see the number of bytes required by all of these types. Now we can easily allocate arrays of

things other than char.

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

int x;

int *y;

y = malloc (10 * sizeof (int));

printf ("% ld\n", y);

10 for (x = 0; x < 10; x++) {

y[x] = 65 + x * 2;

}

for (x = 0; x < 10; x++) {

printf ("% d\n", y[x]);

15 }

free (y);

return 0;

}

On many machines an int is four bytes (32 bits), but you should never assume this. Always use the sizeof

keyword to allocate memory.

19.1.6 String operations

C programs probably do more string manipulation than anything else. Here is a program that divides a sentence

up into words:

include < stdlib .h>

include < stdio .h>

include < string .h>

5 int main (int argc , char * argv [])

{

int length_of_word ;

int i;

106

CHAPTER 19. TRIVIAL INTRODUCTION TO C 19.1. C FUNDAMENTALS

int length_of_sentace ;

10 char p [256];

char *q;

strcpy (p, " hello there , my name is fred .");

15 length_of_sentace = strlen (p);

length_of_word = 0;

for (i = 0; i <= length_of_sentace ; i++) {

20 if (p[i] == ' ' || i == length_of_sentace) {

q = malloc (length_of_word + 1);

strncpy (q, p + i - length_of_word , length_of_word);

q[length_of_word] = 0;

printf (" word : % s\n", q);

25 free (q);

length_of_word = 0;

} else {

length_of_word = length_of_word + 1;

}

30 }

return 0;

}

Here we introduce three more standard C library functions. strcpy stands for stringcopy. It copies memory

from one place to another. Line 13 of this program copies text into the character array p, which is called the

target of the copy.

strlen stands for stringlength. It determines the length of a string, which is just a count of the number of

characters up to the null character.

We need to loop over the length of the sentence. The variable i indicates the current position in the sentence.

Line 20 says that if we �nd a character 32 (denoted by ' ') we know we have reached a word boundary. We

also know that the end of the sentence is a word boundary even though there may not be a space there. The

token || means OR. At this point we can allocate memory for the current word, and copy the word into that

memory. The strncpy function is useful for this. It copies a string, but only up to a limit of length of word

characters (the last argument). Like strcpy, the �rst argument is the target, and the second argument is the

place to copy from.

To calculate the position of the start of the last word, we use p + i - length of word. This means that we

are adding i to the memory location p and then going back length of word counts thus pointing strncpy to

the exact position.

Finally, we null terminate the string on Line 23. We can then print q, free the used memory, and begin with

the next word.

To get a complete list of string operations, see string(3).

19.1.7 File operations

Under most programming languages, �le operations involve three steps: opening a �le, reading or writing to the

�le, and then closing the �le. The command fopen is commonly uses to tell the operating system that you are

ready to begin working with a �le:

The following program opens a �le and spits it out on the terminal:

include < stdlib .h>

include < stdio .h>

include < string .h>

5 int main (int argc , char * argv [])

{

int c;

FILE *f;

10 f = fopen (" test .c", " r");

for (;;) {

107

19.1. C FUNDAMENTALS CHAPTER 19. TRIVIAL INTRODUCTION TO C

c = fgetc (f);

if (c == -1)

break ;

15 printf ("% c", c);

}

fclose (f);

return 0;

}

A new type is presented here: FILE *. It is a �le operations variable that has to be initialised with fopen

before we can use it. The fopen function takes two arguments: the �rst is the name of the �le and the second

is string explaining how we want to open the �le | in this case "r" means reading from the start of the �le.

Other options are "w" for writing and several more described in fopen(3).

The command fgetc gets a character from the �le. It retrieves consecutive bytes from the �le until it reaches

the end of the �le, where it returns a -1. The break statement indicates to immediately terminate the for loop,

whereupon execution will continue from Line 17. break statements can appear inside while loops as well.

You will notice that the for loop is empty. This is allowable C code and means to loop forever.

Some other �le functions are fread, fwrite, fputc, fprintf and fseek. See fwrite(3), fputc(3), fprintf(3)

and fseek(3).

19.1.8 Reading command-line arguments inside C programs

Up until now, you are probably wondering what the (int argc, char *argv[]) are for. These are the

command-line arguments passed to the program by the shell. argc is the number of command-line arguments

and argv is an array of strings of each argument. Printing them out is easy:

include < stdlib .h>

include < stdio .h>

include < string .h>

5 int main (int argc , char * argv [])

{

int i;

for (i = 0; i < argc ; i++) {

printf (" argument %d is %s\n", i, argv [i]);

10 }

return 0;

}

19.1.9 A more complicated example

Here we put this altogether in a program that reads in lots of �les and dumps them as words. Some new things

in the following program are: != is the inverse of ==. It tests if not-equal-to; realloc reallocates memory |

it resizes an old block of memory so that any bytes of the old block are preserved; nn, nt mean the newline

character, 10, or the tab character, 9, respectively.

include < stdlib .h>

include < stdio .h>

include < string .h>

5 void word_dump (char * filename)

{

int length_of_word ;

int amount_allocated ;

char *q;

10 FILE *f;

int c;

c = 0;

15 f = fopen (filename , " r");

length_of_word = 0;

amount_allocated = 256;

20 q = malloc (amount_allocated);

while (c != -1) {

if (length_of_word >= amount_allocated) {

amount_allocated = amount_allocated * 2;

25 q = realloc (q, amount_allocated);

}

c = fgetc (f);

108

CHAPTER 19. TRIVIAL INTRODUCTION TO C 19.1. C FUNDAMENTALS

q[length_of_word] = c;

30

if (c == -1 || c == ' ' || c == '\ n' || c == '\ t') {

if (length_of_word > 0) {

q[length_of_word] = 0;

printf ("% s\n", q);

35 }

amount_allocated = 256;

q = realloc (q, amount_allocated);

length_of_word = 0;

} else {

40 length_of_word = length_of_word + 1;

}

}

fclose (f);

45 }

int main (int argc , char * argv [])

{

int i;

50

if (argc < 2) {

printf (" Usage :\ n\ twordsplit < filename > ...\ n");

exit (1);

}

55

for (i = 1; i < argc ; i++) {

word_dump (argv [i]);

}

60 return 0;

}

This program is more complicated than you might immediately expect. Reading in a �le where we know

that a word will never exceed 30 characters is simple. But what if we have a �le that contains some words that

are 100000 characters long? GNU programs are expected to behave correctly under these circumstances.

To cope with normal as well as extreme circumstances, we assume to start o� with that a word will never

be more than 256 characters. If it appears that the word is growing passed 256 characters, we reallocate the

memory space to double its size (Line 24 amd 25). When we start with a new word, we can free up memory

again, so we realloc back to 256 again (Line 36 and 37). In this way are only use the minimum amount of

memory at each point in time.

We have hence created a program that can work eÆciently with a 100 Gigabyte �le just as easily as with a

100 byte �le. This is part of the art of C programming.

Experiences C programmers may actually sco� at the above listing because it really isn't as \minimalistic" as

you may be able to write it with more experience. In fact it is really a truly excellent listing for the simple reason

that, �rstly, it is easy to understand, and secondly, it is an eÆcient algorithm (albeit not optimal). Readability

in C is your �rst priority | it is imperative that what you do is obvious to anyone reading the code.

19.1.10 #include and prototypes

At the start of each program will be one or more #include statements. These tell the compiler to read in another

C program. Now \raw" C does not have a whole lot in the way of protecting against errors: for example the

strcpy function could just as well be used with one, three or four arguments, and the C program would still

compile. It would however reek havoc with the internal memory and cause the program to crash. These other

.h C programs are called header �les that contain templates for how functions are meant to be called. Every

function you might like to use is contained in one or other template �le. The templates are called function

prototypes.

A function prototype is written the same as the function itself, but without the code. A function prototype

for word dump would simply be:

void word_dump (char * filename);

The trailing ; is essential and distinguishes a function from a function prototype.

After a function prototype, any attempt to use the function in a way other than intended | say, passing to

few arguments or arguments of the wrong type | will be met with �erce opposition from gcc.

You will notice that the #include <string.h> appeared when we started using string operations. Recom-

piling these programs without the #include <string.h> line give the warning message:

test .c:21: warning : implicit declaration of function ` strncpy '

Which is quite to the point.

109

19.1. C FUNDAMENTALS CHAPTER 19. TRIVIAL INTRODUCTION TO C

The function prototypes give a clear de�nition of how every function is to be used. man pages will always

�rst state the function prototype so that you are clear on what arguments are to be passed, and what types they

should have.

19.1.11 C comments

A C comment is denoted with /* <comment lines> */. Anything between the /* and */ is ignored and can

span multiple lines. Every function should be commented, and all non-obvious code should be commented. It

is a good rule that a program that needs lots of comments to explain it is badly written. Also, never comment

the obvious and explain why you do things rather that what you are doing. It is advisable not to make pretty

graphics between each function, so rather:

/* returns -1 on error , takes a positive integer */

int sqr (int x)

{

<...>

than

/***************************---- SQR ----******************************

* x = argument to make the square of *

* return value = *

* -1 (on error) *

5 * square of x (on success) *

**/

int sqr (int x)

{

<...>

which is liable to give people nausea. Under C++, the additional comment // is allowed, which ignores

everything between the // and the end of the line. It is accepted under gcc, but should not be used unless

you really are programming in C++. In addition, programmers often \comment out" lines by placing an #if 0

. . . #endif around them, which really does exactly the same thing as a comment (see Section 19.1.12), but allows

you to comment out comments as well eg:

int x;

x = 10;

#if 0

printf (" debug : x is %d\n", x); /* print debug information */

5 #endif

y = x + 10;

<...>

comments out Line 4.

19.1.12 #define and #if | C macros

Anything starting with a # is not actually C, but a C preprocessor directive. A C program is �rst run through

a preprocessor which removes all spurious junk, like comments and #include statements. C programs can be

made much more readable by de�ning macros instead of literal values. For instance:

define START_BUFFER_SIZE 256

in our example program #defines the text START BUFFER SIZE to be the text 256. Thereafter wherever

in the C program we have a START BUFFER SIZE, the text 256 will be seen by the compiler, and we can use

START BUFFER SIZE instead. This is a much cleaner way of programming, because, if say we would like to change

the 256 to some other value, we only need to change it in one place. START BUFFER SIZE is also more meaningful

than a number, making the program more readable.

Whenever you have a literal constant like 256, you should replace it with a macro de�ned near the top of

your program.

110

CHAPTER 19. TRIVIAL INTRODUCTION TO C 19.2. C LIBRARIES

You can also check for the existence of macros with the #ifdef and #ifndef directive. # directives are really

a programming language all on their own:

/* Set START_BUFFER_SIZE to fine tune performance before compiling : */

define START_BUFFER_SIZE 256

/* # define START_BUFFER_SIZE 128 */

/* # define START_BUFFER_SIZE 1024 */

5 /* # define START_BUFFER_SIZE 16384 */

ifndef START_BUFFER_SIZE

#error This code did not define START_BUFFER_SIZE . Please edit

#endif

10

#if START_BUFFER_SIZE <= 0

#error Wooow ! START_BUFFER_SIZE must be greater than zero

#endif

15 #if START_BUFFER_SIZE < 16

warning START_BUFFER_SIZE to small , program may be inefficient

#elif START_BUFFER_SIZE > 65536

warning START_BUFFER_SIZE to large , program may be inefficient

#else

20 /* START_BUFFER_SIZE is ok, do not report */

#endif

void word_dump (char * filename)

{

25 <...>

amount_allocated = START_BUFFER_SIZE ;

q = malloc (amount_allocated);

<...>

19.2 C Libraries

We made reference to the Standard C Library. The C language on its own does almost nothing; everything

useful is an external function. External functions are grouped into libraries. The Standard C Library is the �le

/lib/libc.so.6. To list all the C library functions, do:

nm / lib /libc .so .6

nm / lib /libc .so .6 | grep ' T ' | cut - f3 -d' ' | grep -v '^ _' | sort -u | less

many of these have man pages, however some will have no documentation and require you to read the comments

inside the header �les. It is better not to use functions unless you are sure that they are standard functions in

the sense that they are common to other systems.

To create your own library is simple. Lets say we have two �les that contain functions that we would like to

create a library out of, simple math sqrt.c,

include < stdlib .h>

include < stdio .h>

static int abs_error (int a, int b)

5 {

if (a > b)

return a - b;

return b - a;

}

10

int simple_math_isqrt (int x)

{

int result ;

if (x < 0) {

15 fprintf (stderr , " simple_math_sqrt : taking the sqrt of a negative number \n");

abort ();

}

result = 2;

while (abs_error (result * result , x) > 1) {

20 result = (x / result + result) / 2;

111

19.2. C LIBRARIES CHAPTER 19. TRIVIAL INTRODUCTION TO C

}

return result ;

}

and, simple math pow.c

include < stdlib .h>

include < stdio .h>

int simple_math_ipow (int x, int y)

5 {

int result ;

if (x == 1 || y == 0)

return 1;

if (x == 0 && y < 0) {

10 fprintf (stderr , " simple_math_pow : raising zero to a negative power \n");

abort ();

}

if (y < 0)

return 0;

15 result = 1;

while (y > 0) {

result = result * x;

y = y - 1;

}

20 return result ;

}

We would like to call the library simple math. It is good practice to name all the functions in the library

simple math ??????. The function abs error is not going to be used outside of the �le simple math sqrt.c

and hence has the keyword static in front of it, meaning that it is a local function.

We can compile the code with:

gcc - Wall -c simple_math_sqrt .c

gcc - Wall -c simple_math_pow .c

The -c option means the compile only. The code is not turned into an executable. The generated �les are

simple math sqrt.o and simple math pow.o. These are called object �les.

We now need to archive these �les into a library. We do this with the ar command (a predecessor to tar):

ar libsimple_math .a simple_math_sqrt .o simple_math_pow .o

ranlib libsimple_math .a

The ranlib command indexes the archive.

The library can now be used. Create a �le test.c:

include < stdlib .h>

include < stdio .h>

int main (int argc , char * argv [])

5 {

printf ("% d\n", simple_math_ipow (4, 3));

printf ("% d\n", simple_math_isqrt (50));

return 0;

}

and run:

gcc - Wall -c test .c

gcc -o test test .o -L. - lsimple_math

The �rst command compiles the �le test.c into test.o, while the second function is called linking the

program, which assimilates test.o and the libraries into a single executable. The option L. means to look in the

current directory for any libraries (usually only /lib and /usr/lib are searched). The option -lsimple math

means to assimilate the library libsimple math.a (lib and .a are added automatically).

We can also create a header �le simple math.h for using the library.

112

CHAPTER 19. TRIVIAL INTRODUCTION TO C 19.3. C PROJECTS | MAKEFILES

/* calculates the integer square root , aborts on error */

int simple_math_isqrt (int x);

/* calculates the integer power , aborts on error */

5 int simple_math_ipow (int x, int y);

Add the line #include "simple math.h" to the top of test.c:

include < stdlib .h>

include < stdio .h>

include " simple_math .h"

This will get rid of the implicit declaration of function warning messages. Usually #include

<simple math.h> would be used, but here this is a header �le in the current directory | our own header

�le | and this is where we use "simple math.h" instead of <simple math.h>.

19.3 C projects | Makefiles

Now what if you make a small change to one of the �les (as you are likely to do very often when developing)?

You could script the process of compiling and linking, but the script would build everything, and not just the

changed �le. What we really need is a utility that only recompiles object �les whose sources have changed: make

is such a utility.

make is a program that looks inside a Makefile in the current directory then does a lot of compiling and

linking. Makefiles contain lists of rules and dependencies describing how to build a program.

Inside a Makefile you need to state a list of what-depends-on-what dependencies that make can work through,

as well as the shell commands needed to achieve each goal.

Our �rst (last?) dependency in the process of completing the compilation is that test depends-on both the

library, libsimple math.a, and the object �le, test.o. In make terms we create a Makefile line that looks like:

test : libsimple_math .a test .o

meaning simply that the �les libsimple math.a test.omust exist and be updated before test. test: is called

a make target. Beneath this line, we also need to state how to build test:

gcc - Wall -o $@ test .o -L. - lsimple_math

The $@ means the name of the target itself which is just substituted with test. Note that the space before

the gcc is a tab character and not 8 space characters.

The next dependency is that libsimple math.a depends on simple math sqrt.o simple math pow.o. Once

again we have a dependency, along with a shell script to build the target. The full Makefile rule is:

libsimple_math .a: simple_math_sqrt .o simple_math_pow .o

rm -f $@

ar rc $@ simple_math_sqrt .o simple_math_pow .o

ranlib $@

Note again that the left margin consists of a single tab character and not spaces.

The �nal dependency is that the �les simple math sqrt.o and simple math pow.o depend on the �les

simple math sqrt.c and simple math pow.c. The requires two make target rules, but make has a short way of

stating such a rule for where there are many C source �les,

.c.o:

gcc - Wall -c -o $*.o $<

which means that any .o �les needed can be built from a .c �le of a similar name using the command gcc -Wall

-c -o $*.o $<. $*.o means the name of the object �le and $< means the name of the �le that $*.o depends

on, one at a time.

113

19.4. DLL S CHAPTER 19. TRIVIAL INTRODUCTION TO C

Putting it all together

Makefiles can in fact have their rules put in any order, so its best to state the most obvious rules �rst for

readability.

There is also a rule you should always state at the outset:

all : libsimple_math .a test

The all: target is the rule that make tries to satisfy when make is run with no command-line arguments. This

just means that libsimple math.a and test are the last two �les to be built, i.e. the top-level dependencies.

Makefiles also have their own form of environment variables, like shell scripts. You can see that we have used

the text simple math in three of our rules. It makes sense to de�ne a macro for this so that if we can easily

change to a di�erent library name.

Our �nal Makefile is:

Comments start with a # (hash) character like shell scripts .

Makefile to build libsimple_math .a and test program .

Paul Sheer < psheer@obsidian .co.za > Sun Mar 19 15:56:08 2000

5 OBJS = simple_math_sqrt .o simple_math_pow .o

LIBNAME = simple_math

CFLAGS = - Wall

all : lib$ (LIBNAME).a test

10

test : lib$ (LIBNAME).a test .o

gcc $(CFLAGS) - o $@ test .o -L. - l${LIBNAME }

lib$ (LIBNAME).a: $(OBJS)

15 rm -f $@

ar rc $@ $(OBJS)

ranlib $@

.c.o:

20 gcc $(CFLAGS) - c -o $*.o $<

clean :

rm -f *. o *. a test

We can now easily type

make

in the current directory to cause everything to be built.

You can see we have added an additional disconnected target clean:. Targets can be run explictly on the

command-line like:

make clean

which removes all built �les.

Makefiles have far more uses than just building C programs. Anything that needs to be built from sources can

employ a Makefile to make things easier.

19.4 Building dynamically loadable libraries | .so �les

114

Chapter 20

Introduction to IP

20.1 Internet Communication

IP stands for Internet Protocol. It is the method by which data gets transmitted over the Internet. At a hardware

level, network cards are capable of transmitting packets (also called datagrams) of data between one another. A

packet contains a small block of say, 1 kilobyte of data. (In contrast to serial lines which transmit continuously.)

All Internet communication occurs via transmission of packets, which travel intact between machines on either

side of the world.

Each packet contains a header preceding the data of 24 bytes or more. Hence slightly more than the said 1

kilobyte of data would be found on the wire. When a packet is transmitted, the header would obviously contain

the destination machine. Each machine is hence given a unique IP address | a 32 bit number. There are no

machines on the Internet that do not have an IP address.

The header actually looks as follows:

Bytes Description

0 bits 0-3: Version, bits 4-7: Internet Header Length (IHL)

1 Type of service (TOS)

2 to 3 Length

4 to 5 Identi�cation

6 to 7 bits 0-3: Flags, bits 4-15: O�set

8 Time to live (TTL)

9 Type

10 to 11 Checksum

12 to 15 Source IP address

16 to 19 Destination IP address

20 to IHL*4-1 Options + padding to round up to four bytes

Data begins at IHL*4 and ends at Length-1

Version will for the mean time be 4, although IP Next Generation (version 6) is in the process of development.

IHL is the length of the header divided by 4. TOS (Type of Service) is a somewhat esoteric �eld for tuning

performance and will not be explained. The Length �eld is the length in bytes of the entire packet inclusive of

the header. The Source and Destination are the IP addresses from and to where the packet is coming/going.

The other �elds will be explained soon.

The above description constitutes the view of the Internet that a machine has. However, physically, the

Internet consists of many small high speed networks (like a company or a university) called Local Area Networks,

or LAN s. These are all connected to each other via lower speed long distance links. On a LAN, the raw medium

of transmission is not a packet but an Ethernet frame. Frames are analogous to packets (having both a header

and a data portion) but are sized to be eÆcient with particular hardware. IP packets are encapsulated within

frames, where the IP packet �ts within the Data part of the frame. A frame may however be to small to hold

an entire IP packet, in which case the IP packet is split into several smaller packets. This group of smaller IP

115

20.2. SPECIAL IP ADDRESSES CHAPTER 20. INTRODUCTION TO IP

packets is then given an identifying number and each smaller packet will then have the Identi�cation �eld set

with that number and the O�set �eld set to indicate its position within the actual packet. On the other side, the

destination machine will reconstruct a packet from all the smaller sub-packets that have the same Identi�cation

�eld.

The convention for writing IP address in human readable form in dotted decimal notation like 152.2.254.81,

where each number is a byte and is hence in the range of 0 to 255. Hence the entire address space is in the range

of 0.0.0.0 to 255.255.255.255. Now to further organise the assignment of addresses, each 32 bit address is

divided into two parts, a network and a host part of the address.

The network part of the address designates the LAN and the host part the particular machine on the LAN.

Now, because it was unknown at the time of speci�cation whether there would one day be more LANs or more

machines on a LAN, three di�erent classes of address were created. Class A addresses begin with the �rst bit of

the host part set to 0 (hence a Class A address always has the �rst dotted decimal number less than 128). The

next 7 bits give the identity of the LAN and the remaining 24 bits give the identity of an actual machine on that

LAN. A Class B address begins with a 1 then a 0 (�rst decimal number is 128 through 192). The next 14 bits

give the LAN and the remaining 16 bits give the machine | most universities, like the address above, are Class

B addresses. Finally, Class C addresses start with a 1 1 0 (�rst decimal number is 192 through 223), and the

next 21 bits and then the next 8 bits are the LAN and machine respectively. Small companies tend use Class C

addresses.

In practice, there are few organisations that require Class A addresses. A university or large company might

use a Class B address, but then it would have its own further subdivisions, like using the third dotted decimal as

a department (bits 16 through 23) and the last dotted decimal (bits 24 through 31) as the machine within that

department. In this way the LAN becomes a micro Internet in itself. Here the LAN is called a network and the

various departments are each called a subnet.

20.2 Special IP Addresses

There are also some IP addresses that have special purposes that are never used on the open Internet.

192.168.0.0{192.168.255.255 are private addresses perhaps used inside a local LAN that does not commu-

nicate directly with the Internet. 127.0.0.0{127.255.255.255 are used for communication with the localhost

| i.e. the machine itself. Usually 127.0.0.1 is an IP address pointing to the machine itself. 10.0.0.0{

10.255.255.255 are additional private address.

20.3 Network Masks and Addresses

Consider again the example of a University with a Class B address. It might have an IP address range of the

137.158.0.0{137.158.255.255. It has decided that the astronomy department should get 512 of its own IP

addresses 137.158.26.0{137.158.27.255. We say that astronomy has a network address of 137.158.26.0. The

machines there all have a network mask of 255.255.254.0. A particular machine in astronomy may have an IP

address of 137.158.27.158. This terminology will be used later.

Dotted IP Binary

Netmask 255 . 255 . 254 . 0 1111 1111 1111 1111 1111 111
| {z }

0 0000 0000

Network address 137 . 158 . 26 . 0
z }| {

1000 1001 1001 1110 0001 1010 0000 0000

IP address 137 . 158 . 27 . 158 1000 1001 1001 1110 0001 1011 1001 1110
| {z }

Host part 0 . 0 . 1 . 158 0000 0000 0000 0000 0000 000
z }| {

1 1001 1110

20.4 Computers on LAN

Here we will de�ne the term LAN as a network of computers that are all more-or-less connected directly together

by Ethernet cables (this is common for the small business with up to about 50 machines). Each machine has an

Ethernet card which is refered to as eth0 when con�guring the network from the commandline. If there is more

than one card on a single machine, then these are named eth0, eth1, eth2 etc. and are each called a network

interface (or just interface) of the machine. LANs work as follows: network cards transmit a frame to the LAN

116

CHAPTER 20. INTRODUCTION TO IP 20.5. CONFIGURING INTERFACES

and other network cards read that frame from the LAN. If any one network card transmits a frame then all other

network cards can see that frame. If a card starts to transmit a frame while another card is in the process of

transmitting a frame, then a clash is said to have occurred and the card waits a random amount of time and then

tries again. Each network card has a physical address (that is inserted at the time of its manufacture, and has

nothing to do with IP addresses) of 48 bits called the hardware address. Each frame has a destination address

in its header that tells what network card it is destined for, so that network cards ignore frames that are not

addressed to them.

Now since frame transmission is governed by the network cards, the destination hardware address must be

determined from the destination IP address before sending a packet to a particular machine. The way this is done

is through a protocol called the Address Resolution Protocol (ARP). A machine will transmit a special packet

that asks `What hardware address is this IP address?'. The guilty machine then responds and the transmitting

machine stores the result for future reference. Of course if you suddenly switch network cards, then other machines

on the LAN will have the wrong information, so ARP has timeouts and re-requests built into the protocol.

20.5 Con�guring Interfaces

Most distributions have a generic way to con�gure your interfaces. Here we will show the raw method.

We �rst have to create a lo interface. This is called the loopback device (and has nothing to do with loopback

block devices: /dev/loop? �les). This is an imaginary device that is used to communicate with the machine

itself, if for instance you are telneting to the local machine, you are actually connecting via the loopback device.

The ifconfig (interfaceconfigure) command is used to do anything with interfaces. First run,

/sbin / ifconfig lo down

/sbin / ifconfig eth0 down

to delete any existing interfaces, then

/sbin / ifconfig lo 127.0.0.1

which creates the loopback interface.

The Ethernet interface can be created with:

/sbin / ifconfig eth0 192.168.3.9 broadcast 192.168.3.255 netmask 255.255.255.0

Now do

/sbin / ifconfig

to view the interfaces. The output will be,

eth0 Link encap : Ethernet HWaddr 00:00: E8:3B:2D:A2

inet addr :192.168.3.9 Bcast :192.168.3.255 Mask :255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU :1500 Metric :1

RX packets :1359 errors :0 dropped :0 overruns :0 frame :0

5 TX packets :1356 errors :0 dropped :0 overruns :0 carrier :0

collisions :0 txqueuelen :100

Interrupt :11 Base address :0 xe400

lo Link encap :Local Loopback

10 inet addr :127.0.0.1 Mask :255.0.0.0

UP LOOPBACK RUNNING MTU :3924 Metric :1

RX packets :53175 errors :0 dropped :0 overruns :0 frame :0

TX packets :53175 errors :0 dropped :0 overruns :0 carrier :0

collisions :0 txqueuelen :0

which shows various interesting bits, like the 48 bit hardware address of the network card (00:00:E8:3B:2D:A2).

117

20.6. CONFIGURING ROUTING CHAPTER 20. INTRODUCTION TO IP

20.6 Con�guring Routing

The interfaces are now active, however there is nothing telling the kernel what packets should go to what interface,

even though we might expect such behaviour to happen on its own. With Unix, you must explicitly tell the

kernel to send particular packets to particular interfaces.

Any packet arriving through any interface is pooled by the kernel. The kernel then looks at each packet's

destination address and decides based on the destination where it should be sent. It doesn't matter where the

packet came from, once the kernel has it, its what its destination address says that matters. Its up to the rest of

the network to ensure that packets do not arrive at the wrong interfaces in the �rst place.

We know that any packet having the network address 127.???.???.??? must go to the loopback device (this

is more or less a convention. The command,

/sbin /route add - net 127.0.0.0 netmask 255.0.0.0 lo

adds a route to the network 127.0.0.0 albeit an imaginary one.

The eth0 device can be routed as follows:

/sbin /route add - net 192.168.3.0 netmask 255.255.255.0 eth0

The command to display the current routes is:

/sbin /route -n

(-n causes route to not print IP addresses as hostnames) gives the output

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

192.168.3.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

This has the meaning: \packets with destination address 127.0.0.0/255.0.0.01 must be sent to the loopback

device", and \packets with destination address 192.168.3.0/255.255.255.0must be sent to the eth0" Gateway

is zero, hence is not set (see later).

The routing table now routes 127. and 192.168.3. packets. Now we need a route for the remaining possible

IP addresses. Unixcan have a route that says to send packets with particular destination IP addresses to another

machine on the LAN, from where they might be forwarded elsewhere. This is sometimes called the gateway

machine. The command is:

/sbin /route add - net < network -address > netmask < netmask > gw < gateway -ip-address > < interface >

This is the most general form of the command, but its often easier to just type:

/sbin /route add default gw < gateway -ip- address > < interface >

when we want to add a route that applies to all packets. The default signi�es all packets; it is the same as

/sbin /route add - net 0.0.0.0 netmask 0.0.0.0 gw < gateway -ip- address > < interface >

but since routes are ordered according to netmask, more speci�c routes are used in preference to less speci�c

ones.

Finally, you can set your hostname with:

hostname cericon . obsidian .co.za

A summary of the example commands so far:

1The notation network/mask is often used to denote ranges of IP address.

118

CHAPTER 20. INTRODUCTION TO IP 20.7. SETTING STARTUP SCRIPTS

/sbin / ifconfig lo down

/sbin / ifconfig eth0 down

/sbin / ifconfig lo 127.0.0.1

/sbin / ifconfig eth0 192.168.3.9 broadcast 192.168.3.255 netmask 255.255.255.0

5 /sbin /route add - net 127.0.0.0 netmask 255.0.0.0 lo

/sbin /route add - net 192.168.3.0 netmask 255.255.255.0 eth0

/sbin /route add default gw 192.168.3.254 eth0

hostname cericon .obsidian .co.za

Although these 7 commands will get your network working, you should not do such a manual

con�guration. The next section explains how to con�gure your startup scripts.

20.7 Setting startup scripts

Most distributions will have an modular and extensible system of startup scripts which initiate networking.

RedHat systems contain the directory /etc/sysconfig/, which contains con�guration �les to bring up networking

automatically.

The �le /etc/sysconfig/network-scripts/ contains:

DEVICE =eth0

IPADDR =192.168.3.9

NETMASK =255.255.255.0

NETWORK =192.168.3.0

5 BROADCAST =192.168.3.255

ONBOOT =yes

The �le /etc/sysconfig/network contains:

NETWORKING =yes

FORWARD_IPV4 =false

HOSTNAME = cericon .obsidian .co.za

DOMAINNAME =obsidian .co.za

5 GATEWAY =192.168.3.254

You can see that these two �les are equivalent to the example con�guration done above. There are an enormous

amount of options that these two �les can take for the various protocols besides TCP/IP, but this is the most

common con�guration.

The �le /etc/sysconfig/network-scripts/ifcfg-lo for the loopback device will be con�gured automatically

at installation, you should never need to edit it.

To stop and and start networking (i.e. bring up and down the interfaces and routing), type

/etc /rc.d/init .d/network stop

/etc /rc.d/init .d/network start

which indirectly will read your /etc/sysconfig/ �les.

20.8 Diagnostic utilities

20.8.1 ping

The ping command is the most common network utility. IP packets come in three types on the Internet,

represented in the Type �eld of the IP header: UDP, TCP and ICMP. (The former two will be discussed later,

and represent the two basic methods of communication between to programs running on di�erent machines.)

ICMP however, stands for and are diagnostic packets that are responded to in a special way. Try:

ping metalab .unc .edu

or some other well known host. You will get output like:

119

20.8. DIAGNOSTIC UTILITIES CHAPTER 20. INTRODUCTION TO IP

PING metalab .unc .edu (152.19.254.81) from 192.168.3.9 : 56(84) bytes of data .

64 bytes from 152.19.254.81: icmp_seq =0 ttl =238 time =1059.1 ms

64 bytes from 152.19.254.81: icmp_seq =1 ttl =238 time =764.9 ms

64 bytes from 152.19.254.81: icmp_seq =2 ttl =238 time =858.8 ms

5 64 bytes from 152.19.254.81: icmp_seq =3 ttl =238 time =1179.9 ms

64 bytes from 152.19.254.81: icmp_seq =4 ttl =238 time =986.6 ms

64 bytes from 152.19.254.81: icmp_seq =5 ttl =238 time =1274.3 ms

64 bytes from 152.19.254.81: icmp_seq =6 ttl =238 time =930.7 ms

What is happening is that ping is sending ICMP packets to metalab.unc.edu which is automatically respond-

ing with a return ICMP packet. Being able to ping a machine is often the acid test of whether you have

communications with it. Note that some site speci�cally �lter ICMP packets, hence ping cnn.com doesn't work.

ping sends a packet every second and measures the time it takes to receive the return packet | like a submarine

sonar \ping". Over the Internet, you can get times in excess of 2 seconds if the place is remote enough. On a

local LAN this will drop to under a millisecond.

If ping does not even get to the line PING metalab.unc.edu. . . , it means that it cannot resolve the hostname.

You should then check that your DNS is set up correctly | see Chapter 21. If it gets to that line, but no further,

it means that the packets are not getting there, or are not getting back. In all other cases, ping gives an error

message indicating either the absence of routes or interfaces.

20.8.2 traceroute

traceroute is a rather fascinating utility to identify where a packet has been. It makes use of facilities built into

the the ICMP protocol. On my machine,

traceroute metalab .unc .edu

gives,

traceroute to metalab .unc.edu (152.19.254.81), 30 hops max , 38 byte packets

1 192.168.3.254 (192.168.3.254) 1.197 ms 1.085 ms 1.050 ms

2 192.168.254.5 (192.168.254.5) 45.165 ms 45.314 ms 45.164 ms

3 obsgate (192.168.2.254) 48.205 ms 48.170 ms 48.074 ms

5 4 obsposix (160.124.182.254) 46.117 ms 46.064 ms 45.999 ms

5 cismpjhb.posix .co.za (160.124.255.193) 451.886 ms 71.549 ms 173.321 ms

6 cisap1 .posix .co.za (160.124.112.1) 274.834 ms 147.251 ms 400.654 ms

7 saix .posix .co.za (160.124.255.6) 187.402 ms 325.030 ms 628.576 ms

8 ndf-core1 .gt.saix .net (196.25.253.1) 252.558 ms 186.256 ms 255.805 ms

10 9 ny-core .saix .net (196.25.0.238) 497.273 ms 454.531 ms 639.795 ms

10 bordercore6- serial5 -0-0-26. WestOrange.cw.net (166.48.144.105) 595.755 ms 595.174 ms *

11 corerouter1. WestOrange .cw.net (204.70.9.138) 490.845 ms 698.483 ms 1029.369 ms

12 core6 .Washington .cw.net (204.70.4.113) 580.971 ms 893.481 ms 730.608 ms

13 204.70.10.182 (204.70.10.182) 644.070 ms 726.363 ms 639.942 ms

15 14 mae-brdr -01. inet .qwest .net (205.171.4.201) 767.783 ms * *

15 * * *

16 * wdc -core -03. inet .qwest .net (205.171.24.69) 779.546 ms 898.371 ms

17 atl-core -02. inet .qwest .net (205.171.5.243) 894.553 ms 689.472 ms *

18 atl-edge -05. inet .qwest .net (205.171.21.54) 735.810 ms 784.461 ms 789.592 ms

20 19 * * *

20 * * unc -gw.ncren .net (128.109.190.2) 889.257 ms

21 unc-gw.ncren .net (128.109.190.2) 646.569 ms 780.000 ms *

22 * helios .oit.unc.edu (152.2.22.3) 600.558 ms 839.135 ms

So you can see that there were twenty machines (or hops) between mine and metalab.unc.edu.

20.8.3 tcpdump

tcpdump watches a particular interface for all the traÆc that passes it | i.e. all the traÆc of all the machines

connected to the same hub. A network card usually grabs only the frames destined for it, but tcpdump puts

the card into promiscuous mode, meaning for it to retrieve all frames regardless of their destination hardware

address. Try

tcpdump -n -N -f -i eth0

tcpdump is also discussed in Section 23.4. Deciphering the output of tcpdump is left for now as an exercise for

the reader. More on the tcp part of tcpdump in Chapter ??.

120

Chapter 21

DNS and Name Resolution

We know that each computer on the Internet has its own IP address. Although this is suÆcient to identify

a computer for purposes of transmitting packets, it is not particularly accommodating to people. Also, if a

computer were to be relocated we would like to still identify it by the same name.

Hence each computer is given a descriptive textual name. The basic textual name of a machine is called the

unquali�ed-hostname1 and is usually less than eight characters and contains only lowercase letters and numbers

(and especially no dots). Groups of computers have a domainname. The full name of machine is unquali�ed-

hostname.domainname and is called the fully quali�ed hostname2 or the quali�ed-hostname3 For example, my

computer is cericon. The domainname of my company is obsidian.co.za, and hence the quali�ed-hostname

of my computer is cericon.obsidian.co.za, although the IP address might be 160.124.182.1.

Often the word domain usally is synonymous with domainname, and the word hostname on its own can mean

either the quali�ed or unquali�ed hostname.

This system of naming computers is called the Domain Name System (DNS)

21.1 Top Level Domains (TLD's)

Domain's always end in a standard set of things. Here is a complete list of things that the last bit of a domain

can be:

.com A US or international company proper. In fact, any organisation might have a .com domain.

.gov A US government organisation.

.edu A US university.

.mil A US military department.

.int An organisation established by international treaties.

.org A US or non-pro�t organisation. In fact, anyone can have a .org domain.

.net An Internet service providor. In fact, any bandwidth reseller, IT company or any company at all might

have a .net domain.

Besides the above, the domain could end in a two letter country code.

The complete list of country codes follows is given in Table 21.1. The .us domain is rarely used, since in the

US .com, .edu, .org, .mil, .gov, .int, or .net are mostly used.

Within each country, a domain may have things before it for better description. Each country may implement

a di�erent structure. Some examples are:

1This is my own terminology.
2Standard terminology
3My terminology.

121

21.2. NAME RESOLUTION CHAPTER 21. DNS AND NAME RESOLUTION

.af Afghanistan .do Eominican Rep. .li Liechtenstein .ws Samoa

.al Albania .tp East Timor .lt Lithuania .sm San Marino

.dz Algeria .ec Ecuador .lu Muxembourg .st Sao Tome and Principe

.as American samoa .eg Egypt .mo Macau .sa Saudi Arabia

.ad Andorra .sv El Salvador .mg Madagascar .sn Senegal

.ao Angola .gq Equatorial Guinea .mw Malawi .sc Seychelles

.ai Anguilla .ee Estonia .my Malaysia .sl Sierra Leone

.aq Antarctica .et Fthiopia .mv Maldives .sg Singapore

.ag Antigua and barbuda .fk Falkland Islands (Malvinas) .ml Mali .sk Slovakia

.ar Argentina .fo Faroe Islands .mt Malta .si Slovenia

.am Armenia .fj Fiji .mh Marshall Islands .sb Solomon Islands

.aw Aruba .fi Finland .mq Martinique .so Somalia

.au Australia .fr France .mr Mauritania .za South Africa

.at Austria .gf French Guiana .mu Mauritius .es Spain

.az Bzerbaijan .pf French Polynesia .mx Mexico .lk Sri Lanka

.bs Bahamas .tf Grench Southern Territories .fm Micronesia .sd Sudan

.bh Bahrain .ga Gabon .md Moldova, Rep. of .sr Suriname

.bd Bangladesh .gm Gambia .mc Monaco .sj Svalbard and Jan Mayen Is.

.bb Barbados .ge Georgia .mn Mongolia .sz Swaziland

.be Belgium .de Germany .ms Montserrat .se Sweden

.bz Belize .gh Ghana .ma Morocco .ch Switzerland

.bj Benin .gi Gibraltar .mz Mozambique .sy Tyrian Arab Rep.

.bm Bermuda .gr Greece .mm Nyanmar .tw Taiwan, Province of China

.bt Bhutan .gl Greenland .na Namibia .tj Tajikistan

.bo Bolivia .gd Grenada .nr Nauru .tz Tanzania, United Rep. of

.ba Bosnia Hercegovina .gp Guadeloupe .np Nepal .th Thailand

.bw Botswana .gu Guam .nl Netherlands .tg Togo

.bv Bouvet Island .gt Guatemala .an Netherlands Antilles .tk Tokelau

.br Brazil .gn Guinea .nt Neutral Zone .to Tonga

.io British Indian Ocean Territory .gw Guinea-Bissau .nc New Caledonia .tt Trinidad and Tobago

.bn Brunei Darussalam .gy Huyana .nz New Zealand .tn Tunisia

.bg Bulgaria .ht Haiti .ni Nicaragua .tr Turkey

.bf Burkina Faso .hm Heard and Mc Donald Islands .ne Niger .tm Turkmenistan

.bi Burundi .hn Honduras .ng Nigeria .tc Turks and Caicos Islands

.by Celarus .hk Hong Kong .nu Niue .tv Uuvalu

.kh Cambodia .hu Iungary .nf Norfolk Island .ug Uganda

.cm Cameroon .is Iceland .mp Northern Mariana Islands .ua Ukraine

.ca Canada .in India .no Oorway .ae United Arab Emirates

.cv Cape Verde .id Indonesia .om Pman .gb United Kingdom

.ky Cayman Islands .ir Iran (Islamic Rep. of) .pk Pakistan .us United States

.cf Central African Rep. .iq Iraq .pw Palau .um US Minor Outlying Islands

.td Chad .ie Ireland .pa Panama .uy Uruguay

.cl Chile .il Israel .pg Papua New Guinea .su USSR

.cn China .it Jtaly .py Paraguay .uz Vzbekistan

.cx Christmas Island .jm Jamaica .pe Peru .vu Vanuatu

.cc Cocos (Keeling) Islands .jp Japan .ph Philippines .va Vatican City State (Holy See)

.co Colombia .jo Kordan .pn Pitcairn .ve Venezuela

.km Comoros .kz Kazakhstan .pl Poland .vn Viet Nam

.cg Congo .ke Kenya .pt Portugal .vg Virgin Islands (British)

.ck Cook Islands .ki Kiribati .pr Querto Rico .vi Wirgin Islands (U.S.)

.cr Costa Rica .kp Korea, Demo. People's Rep.of .qa Ratar .wf Wallis and Futuna Islands

.ci Cote D'ivoire .kr Korea, Rep. of .re Reunion .eh Yestern Sahara

.hr Croatia .kw Kuwait .ro Romania .ye Yemen, Rep. of

.cu Cuba .kg Lyrgyzstan .ru Russian Federation .yu Zugoslavia

.cy Cyprus .la Lao People's Demo. Rep. .rw Swanda .zr Zaire

.cz Czech Rep. .lv Latvia .sh St. Helena .zm Zambia

.cs Dzechoslovakia .lb Lebanon .kn Saint Kitts and Nevis .zw Zimbabwe

.dk Denmark .ls Lesotho .lc Saint Lucia

.dj Djibouti .lr Liberia .pm St. Pierre and Miquelon

.dm Dominica .ly Libyan Arab Jamahiriya .vc St. Vincent and the Grenadines

Table 21.1: ISO country codes

.co.za A South African company. (za = Zuid Afrika, for the old Dutch postal codes.)

.org.za A South African non-pro�t organisation.

.ac.za A South African academic university.

.edu.au An australian tertiary educational institution.

.gov.za A South African government organisation.

Note that a South African company might choose a .com domain or a .co.za domain. In our case we use

obsidian.co.za. The same applies everywhere, so there is no hard and fast rule to locate an organisation from

its domain.

21.2 Resolving DNS names to IP addresses

In practice, a user will type a hostname (say www.obsidian.co.za) into some application like a web browser.

The application has to then try �nd the IP address associated with that name, in order to send packets to it.

This section describes the query structure used on the Internet so that everyone can �nd out anyone else's IP

address.

An obvious way to do this is to distribute a long table of hostname vs. IP numbers to every machine on the

Internet. But as soon as you have more than a few thousand machines, this becomes impossible.

Another obvious way to do this is to have one huge computer on the Internet somewhere who's IP address

is known by everyone. This computer would be responsible for servicing requests for IP numbers, and the said

122

CHAPTER 21. DNS AND NAME RESOLUTION 21.2. NAME RESOLUTION

application running on your local machine would just query this big machine. Of course with their being billions

of machines out their, this will obviously create far too much network traÆc4.

The DNS structure on the Internet actually works like this:

There are computers that service requests for IP numbers | millions of them. They are called name servers

(or DNS servers), and a request is called a DNS lookup. However, each name server only has information about

a speci�c part of the Internet, and they constantly query each other.

There are 13 root name servers on the Internet5:

a.root - servers .net 198.41.0.4

b.root - servers .net 128.9.0.107

c.root - servers .net 192.33.4.12

d.root - servers .net 128.8.10.90

5 e.root - servers .net 192.203.230.10

f.root - servers .net 192.5.5.241

g.root - servers .net 192.112.36.4

h.root - servers .net 128.63.2.53

i.root - servers .net 192.36.148.17

10 j.root - servers .net 198.41.0.10

k.root - servers .net 193.0.14.129

l.root - servers .net 198.32.64.12

m.root - servers .net 202.12.27.33

Each country also has a name server, and in turn each organisation has a name server. Each name server only

has information about machines in its own domain, as well as information about other name servers. The root

name servers only have information on the IP addresses of the name servers of .com, .edu, .za etc. The .za name

server only has information on the IP addresses of the name servers of .org.za, .ac.za, .co.za etc. The .co.za

name server only has information on the name servers of all South African companies, like .obsidian.co.za,

.icon.co.za, .mweb.co.za, etc. The .obsidian.co.za, name server only has info on the machines at Obsidian

Systems, like www.obsidian.co.za.

Your own machine will have a name server de�ned in its con�guration �les that is geographically close to it.

The responsibility of this name server will be to directly answer any queries about its own domain that it has

information about, and also to answer any other queries by querying as many other name servers on the Internet

as is necessary.

Now our application is presented with www.obsidian.co.za. The following sequence of lookups take place

to resolve this name into an IP address. This procedure is called hostname resolution and the algorithm that

performs this operation is called the resolver.

1. The application will check certain special databases on the local machine. If it can get an answer directly

from these, it proceeds no further.

2. The application will look up a geographically close name server from the local machines con�guration �le.

Lets say this machine is called ns.

3. The application will query ns with \www.obsidian.co.za?".

4. ns will decide if that IP has been recently looked up before. If it has, there is no need to ask further, since

the result would be stored in a local cache.

5. ns will see if the domain is local. I.e. if it is a computer that it has direct information about. In this case

this would only be true if the ns were Obsidian's very own name server.

6. ns will strip out the TLD (Top Level Domain) .za It will query a root name server, asking what name

server is responsible for .za The answer will be ucthpx.uct.ac.za of IP address 137.158.128.1.

7. ns will strip out the next highest domain co.za It will query 137.158.128.1, asking what name server is

responsible for co.za The answer will be secdns1.posix.co.za of IP address 160.124.112.10.

4Actually, A Microsoft LAN kind of works this way | i.e. not very well
5This list can be gotten from ftp://ftp.rs.internic.net/domain/named.root

123

21.3. CONFIGURATION CHAPTER 21. DNS AND NAME RESOLUTION

8. ns will strip out the next highest domain obsidian.co.za It will query 160.124.112.10, asking what

name server is responsible for obsidian.co.za The answer will be lava.obsidian.co.za of IP address

196.28.133.1.

9. ns will query 196.28.133.1 asking what the IP address is of www.obsidian.co.za The answer will be

160.124.182.1.

10. ns will return the result to the application.

11. ns will store each of these results in a local cache with an expiry date. To avoid having to look them up a

second time.

21.3 Con�guring your local machine

We made reference to \con�guration �les" above. These are actually the �les: /etc/host.conf, /etc/hosts,

and /etc/resolv.conf. These are the three and only �les that specify how applications are going to lookup IP

numbers, and have nothing to do with the con�guration �les of the nameserver daemon itself, even thought a

nameserver daemon might be running on the local machine.

When an application requires to lookup a hostname it goes through the following procedure6. The following

are equivalent steps 1, 2 and 3 above with the details of the con�guration �les �lled in. The con�guration �les

that follow are taken as they my might be on my own personal machine:

1. The application will check the �le /etc/host.conf. This �le will usually have a line order hosts,bind in

it, specifying that it should �rst (hosts) check the local database �le /etc/hosts, and then (bind) query

the name server speci�ed in /etc/resolv.conf. The �le /etc/hosts contains a text readable list of IP

addresses and names. An example is given below. If it can get an answer directly from /etc/hosts, it

proceeds no further.

2. The application will check in the �le /etc/resolv.conf for a line nameserver <nameserver>. There can

actually be three of these lines, so that if one nameserver fails, the application can try the next in turn.

3. The application will query that name server with the hostname. If the hostname is unquali�ed, then

it appends the domainname of the local machine to it before trying the query. If the keyword search

<domain1> <domain2> ... <domainN> appears in the con�guration �le, then it tries a query with each

of <domain1>, <domain2> etc. appended in turn until the query successfully returns an IP. This just saves

you having to type in the full hostname for computers within your own organisation.

4. The nameserver will proceed with the hierarchical queries described from step 4 onward.

The /etc/hosts �le should look something like this:

127.0.0.1 localhost . localdomain localhost

192.168.3.9 cericon .obsidian .co.za cericon

192.168.3.10 aragorn .obsidian .co.za aragorn

192.168.2.1 ra. obsidian .co.za ra

The hosts aragorn, cericon and ra are the hosts I am most interested in, and hence are listed here. cericon

is my local machine and must be listed. You can list any hosts that you want fast lookups too, or hosts that

might need to be known in spite of nameservers being down.

The /etc/host.conf might look like this. All of the lines are optional:

order hosts , bind , nis

trim some .domain

spoofalert

nospoof

5 multi on

reorder

6What is actually happening is that the application is making a C library call to the function gethostbyname(), hence all these

con�guration �les really belong to the C library packages glibc or libc. However this is a detail you need not be concerned about.

124

CHAPTER 21. DNS AND NAME RESOLUTION 21.3. CONFIGURATION

order The order in which lookups are done. Don't try �ddling with this value. It never seems to have any e�ect.

You should leave it as order hosts,bind (or order hosts,bind,nis if you are using NIS { discussed in

later chapters). Once again, bind means to then go and check the /etc/resolv.conf which holds the

nameserver query options.

trim Strip the domain some.domain from the end of a hostname before trying a lookup. You will probably never

require this feature.

spoofalert Try reverse lookups on a hostname after looking up the IP (i.e. do a query to �nd the name from

the IP.) If this query does not return the correct result, it could mean that someone is trying to make it

look like they are a machine that they aren't. This is a hackers trick called spoo�ng. This warns you of

such attempts in your log �le /var/log/messages (see Section ??).

nospoof Disallows results that fail this spoof test.

multi on Return more than one result if there are aliases. Actually, a host can have several IP numbers and

an IP number can have several hostnames. Consider a computer that might want more than one name

(ftp.obsidian.co.za and www.obsidian.co.za are the same machine.) Or a machine that has several

networking cards and an IP address for each. This should always be turned on. multi off is the alternative.

Most applications use only the �rst value returned.

reorder Reorder says that if more than one IP is returned by a lookup, then that list should be sorted according

to the IP that has the most convenient network route.

Despite this array of options, an /etc/host.conf �le almost always looks simply like:

order hosts , bind

multi on

The /etc/resolv.conf �le could look something like this:

nameserver 192.168.2.1

nameserver 160.124.182.1

nameserver 196.41.0.131

search obsidian .co.za ct. obsidian .co.za uct .ac.za

5 sortlist 192.168.3.0/255.255.255.0 192.168.2.0/255.255.255.0

options ndots :1 timeout :30 attempts :2 rotate no-check -names inet6

nameserver Speci�es a nameserver to query. No more than three may be listed. The point of having more than

one is to safeguard against a nameserver being down | the next in the list will then just be queried.

search If given a hostname with less than ndots dots (i.e. 1 in this case), add each of the domains in turn to

the hostname, trying a lookup with each. This allows you to type in an unquali�ed hostname and have

application work out what organisation it is belongs to from the search list. You can have up to six domains,

but then queries would be a time-consuming.

domain The line \domain ct.obsidian.co.za" is the same as \search ct.obsidian.co.za obsidian.co.za

co.za". Always use search explicitly instead of domain to reduce the number of queries to a minimum.

sortlist If more than one host is returned, sort them according to the following network/masks.

options Various additional parameters can be speci�ed in this one line:

ndots Explained under search above. The default is one.

timeout How long to wait before considering a query to have failed. The default is 30 seconds.

attempts Number of attempts to make before failing. This defaults to 2. This means that a down

nameserver will cause your application to wait 1 full minute before deciding that it can't resolve the

IP.

rotate Try the nameservers at in round robin fashion. This distributes load across nameservers.

no-check-names Don't check for invalid characters in hostnames.

125

21.4. REVERSE LOOKUPS CHAPTER 21. DNS AND NAME RESOLUTION

inet6 The man page for resolv.conf (resolver(5)) says:

inet6 sets RES_USE_INET6 in _res.options . This has the ef-

fect of trying a AAAA query before an A query inside

the gethostbyname function, and of mapping IPv4 re-

sponses in IPv6 ``tunnelled form'' if no AAAA records

are found but an A record set exists.

But I don't know what an AAAA query is.

Despite this array of options, an /etc/resolv.conf �le almost always looks simply like:

nameserver 192.168.2.254

search obsidian .co.za

21.4 Reverse lookups

A reverse lookup was mentioned under nospoof above. This is the determining of the hostname from the IP

address. The course of queries is similar to forward lookups using part of the IP address to �nd out what machines

are responsible for what ranges of IP address.

A forward lookup is an ordinary lookup of the IP address from the hostname.

21.5 Authoritive for a domain

It has been emphasised that name servers only hold information for their own domains. Any other information

they may have about another domain is cached, temporary data that has an expiry date attached to it.

The domain that a name server has information about is said to be the domain that a name server is

authoritive for. Alternatively we say: \a name server is authorative for the domain". For instance, the server

ns2.obsidian.co.za is authoritive for the domain obsidian.co.za. Hence lookups from anywhere on the

Internet having the domain obsidian.co.za ultimately are the responsibility of ns2.obsidian.co.za, and

originate (albeit via a long series of caches) from the host ns2.obsidian.co.za.

21.6 The host, ping and whois command

The command host looks up a hostname or an IP address. Try:

host www .cnn .com

for an example of a host with lots of IP address. Keep typing host over and over. Notice that the order of

the hosts keeps changing randomly. This is to distribute load amidst the many cnn.com servers.

Now pick one of the IP addresses and type

host < ip- address >

This will return the hostname cnn.com.

Note that the host command is not available on all Unix's

The ping command has nothing directly to do with DNS, but is a quick way of getting an IP address, and checking

if a host is responding at the same time. It is often used as the acid test for network and DNS connectivity. See

Section 20.8.1.

Now enter:

126

CHAPTER 21. DNS AND NAME RESOLUTION 21.7. THE NSLOOKUP COMMAND

whois cnn . com@rs . internic .net

(Note that original BSD whois worked like whois -h <host> <user>) You will get a response like:

[rs. internic .net]

Whois Server Version 1.1

5 Domain names in the . com , . net , and . org domains can now be registered

with many different competing registrars . Go to http :// www . internic .net

for detailed information .

Domain Name : CNN .COM

10 Registrar : NETWORK SOLUTIONS , INC .

Whois Server : whois . networksolutions .com

Referral URL : www . networksolutions .com

Name Server : NS -01 A.ANS .NET

Name Server : NS -01 B.ANS .NET

15 Name Server : NS -02 A.ANS .NET

Name Server : NS -02 B.ANS .NET

Updated Date : 22- sep -1999

20 >>> Last update of whois database : Thu , 20 Jan 00 01:39:07 EST <<<

The Registry database contains ONLY . COM , . NET , . ORG , . EDU domains and

Registrars .

7

(Internic happens to have this database of .com, .net, .org and .edu domains.)

21.7 The nslookup command

nslookup is a program to interactively query a nameserver. If you run

nslookup

you will get a > prompt where you can type commands. If you type in a hostname, nslookup will return its

IP address(s) and visa versa. Also typing

help

any time will return a complete list of commands. By default, nslookup uses the �rst nameserver listed in

/etc/resolv.conf for all its queries. However, the command

server < nameserver >

can be used to explicitly use a particular server.

21.7.1 NS, MX, PTR, A and CNAME records

The word record is a piece of DNS information.

Now enter the command:

set type =NS

7An example of Y2K non-compliancy

127

21.7. THE NSLOOKUP COMMAND CHAPTER 21. DNS AND NAME RESOLUTION

This tells nslookup to return the second type of information that a DNS can deliver: the authoritive name

server for a domain or the NS record of the domain. You can enter any domain here. For instance, enter

set type =NS

cnn .com

It will return

Non - authoritative answer :

cnn .com nameserver = NS -02 B.ANS .NET

cnn .com nameserver = NS -02 A.ANS .NET

cnn .com nameserver = NS -01 B.ANS .NET

5 cnn .com nameserver = NS -01 A.ANS .NET

Authoritative answers can be found from :

NS -02 B.ANS .NET internet address = 207.24.245.178

NS -02 A.ANS .NET internet address = 207.24.245.179

10 NS -01 B.ANS .NET internet address = 199.221.47.8

NS -01 A.ANS .NET internet address = 199.221.47.7

This tells us that their are four name servers authoritive for the domain cnn.com (one plus three backups).

It also tells us that it did not get this answer from an authoritive source, but via a cached source. It also tells us

what nameservers are authorative for this very information.

Now switch to a nameserver that is authoritive for cnn.com:

server NS -02 B.ANS .NET

and run the same query:

cnn .com

The new result is somewhat more emphatic, but no di�erent.

There are only a few other kinds of records that you can get from a nameserver. Try

set type =MX

cnn .com

to get the so-called MX record for that domain. The MX record is the server responsible for handling mail

destined to that domain. MX records also have a priority (usually 10 or 20). This tells any mail server to try the

20 one should the 10 one fail, and so on. There are usually only one or two MX records. Mail is actually the

only Internet service handled by DNS. (For instance there is no such thing as a NEWSX record for news, nor a WX

record for web pages, whatever kind of information we may like such records to hold.)

Also try

set type =PTR

<ip-address >

set type =A

<hostname >

5 set type =CNAME

<hostname >

So-called PTR records are reverse lookups, or PoinTeRs to hostnames. So-called A records are forward lookups

(the default type of lookup when you �rst invoke nslookup), or Address lookups. So-called CNAME records are

lookups of Canonical NAMEes. DNS allows one to alias a computer to many di�erent names, even though each

has one real name (called the canonical name). CNAME lookups returns the machine name proper.

128

Chapter 22

named | Domain Name Server

This chapter follows on from Chapter 21.

There seems to be a lot of hype that elevates the name server to something mystical and illusive. In fact,

setting up a nameserver is a standard and trivial exercise.

A nameserver daemon is also no heavyweight service: The named executable is 500kB, and consumes little

CPU.

The package that the name server comes in is called bind. This chapter assumes a bind of approximately

bind-8.2 or later. bind stands for Berkeley Internet Name Domain.

The diÆculty with setting up a nameserver is that the con�guration �les are impossible to construct from a

speci�cation without making some kind of typing error.

The solution is quite simple: never create a nameserver con�g �le from scratch. always copy one from an

existing working name server. Here we will give more example con�guration �les than explanation. You can

copy these examples to create your own nameserver.

Before you even start working on nameserver con�guration, you should start a new terminal window with the

command:

tail -f / var /log / messages

Keep this window throughout the entire setup and testing procedure. From now on, when I refer to messages

I am refering to a message in this window.

Documentation

The man page for named are hostname(7), named-xfer(8), named(8), and ndc(8).

The man pages reference a document called the \Name Server Operations Guide for BIND". What they actually

mean is a text �le /usr/doc/bind-8.2/bog/file.lst or a PostScript �le /usr/doc/bind-8.2/bog/file.psf

for printing.

The problem with some of this documentation is that it is still based on the old (now depreciated) named.boot

con�guration �le. There is a program /usr/doc/bind-8.2/named-bootconf/named-bootconf that reads a

named.boot �le from stdin and writes a named.conf �le to stdout. I found it useful to echo "old config

line" | named-bootconf to see what a new style equivalent would be.

The most important info is in /usr/doc/bind-8.2/htmlwhich contains a complete reference to con�guration.

There are also FAQ documents in /usr/doc/bind-8.2/misc and various thesis on security.

/usr/doc/bind-8.2/misc/style.txt contains the recommended layout of the con�guration �les for consistent

spacing and readability. Finally /usr/doc/bind-8.2/rfc contains the relevant RFC's (See Section ??).

129

CHAPTER 22. NAMED | DOMAIN NAME SERVER

Con�guration �les

There is only one main con�guration �le for named: /etc/named.conf. The named service once used a �le

/etc/named.boot but this has been scrapped. If there is a named.boot �le in your /etc directory then it is not

being used, except possibly by a very old version of bind.

The named.conf �le will have a line in it directory "/var/named"; or directory "/etc/named";. This

directory hold various �les containing textual lists of name to IP address mappings. The following example is a

nameserver for a company that has been given a range of IP address (196.28.133.20{30), as well as one single IP

address (160.124.182.44). It also must support a range of internal IP addresses (192.168.2.0{255) The trick

is not to think about how everything works. If you just copy and edit things in a consistent fashion, carefully

reading the comments, this will work �ne.

The /etc/name.conf �le should look like:

/*

* The `` directory '' line tells named that any further file name 's

* given are under the / var /named / directory .

*/

5 options {

directory "/ var /named ";

/*

* If there is a firewall between you and nameservers you want

* to talk to , you might need to uncomment the query -source

10 * directive below . Previous versions of BIND always asked

* questions using port 53, but BIND 8.1 uses an unprivileged

* port by default .

*/

// query -source address * port 53;

15 };

/* The list of root servers : */

zone "." {

type hint ;

20 file " named .ca ";

};

/* Forward lookups of hosts in my domain : */

zone " obsidian .co.za " {

25 type master ;

file " named . obsidian .co.za ";

};

/* Reverse lookups of the localhost : */

30 zone "0.0.127. in-addr .arpa " {

type master ;

file " named .local ";

};

35 /* Reverse lookups of local IP numbers : */

zone "1.168.192. in-addr .arpa " {

type master ;

file " named .192.168.1";

};

40

/* Reverse lookups of 196.28.133.* Internet IP numbers : */

zone "133.28.196. in-addr .arpa " {

type master ;

file " named .196.28.133";

45 };

/* Reverse lookup of 160.124.182.44 only : */

zone "44.182.124.160. in-addr .arpa " {

type master ;

130

CHAPTER 22. NAMED | DOMAIN NAME SERVER

50 file " named .160.124.182.44";

};

The /var/named.ca �le should look like:

; Get the original of this file from ftp :// ftp .rs. internic .net / domain /named .root

;

; formerly ns.internic .net

. 3600000 IN NS a.root - servers .net .

5 a.root - servers .net . 3600000 A 198.41.0.4

. 3600000 NS b.root - servers .net .

b.root - servers .net . 3600000 A 128.9.0.107

. 3600000 NS c.root - servers .net .

c.root - servers .net . 3600000 A 192.33.4.12

10 . 3600000 NS d.root - servers .net .

d.root - servers .net . 3600000 A 128.8.10.90

. 3600000 NS e.root - servers .net .

e.root - servers .net . 3600000 A 192.203.230.10

. 3600000 NS f.root - servers .net .

15 f.root - servers .net . 3600000 A 192.5.5.241

. 3600000 NS g.root - servers .net .

g.root - servers .net . 3600000 A 192.112.36.4

. 3600000 NS h.root - servers .net .

h.root - servers .net . 3600000 A 128.63.2.53

20 . 3600000 NS i.root - servers .net .

i.root - servers .net . 3600000 A 192.36.148.17

. 3600000 NS j.root - servers .net .

j.root - servers .net . 3600000 A 198.41.0.10

. 3600000 NS k.root - servers .net .

25 k.root - servers .net . 3600000 A 193.0.14.129

. 3600000 NS l.root - servers .net .

l.root - servers .net . 3600000 A 198.32.64.12

. 3600000 NS m.root - servers .net .

m.root - servers .net . 3600000 A 202.12.27.33

The /var/named.obsidian.co.za �le should look like:

@ IN SOA ns1 . obsidian .co.za . root .ns1 . obsidian .co.za . (

2000012101 ; Serial number

10800 ; Refresh every 3 hours

3600 ; Retry every hour

5 3600000 ; Expire after 42 days

259200) ; Minimum Time to Live (TTL) of 3 days

IN NS ns1 . obsidian .co.za.

IN NS ns2 . obsidian .co.za.

10

IN A 160.124.182.44

IN MX 10 mail1 .obsidian .co.za.

IN MX 20 mail2 .obsidian .co.za.

15 ns1 IN A 196.28.144.1

ns2 IN A 196.28.144.2

ftp IN A 196.28.133.3

www IN CNAME obsidian .co.za.

20 mail1 IN CNAME ns1 . obsidian .co.za.

mail2 IN CNAME ns2 . obsidian .co.za.

gopher IN CNAME ftp . obsidian .co.za.

pop IN CNAME mail1 . obsidian .co.za.

proxy IN CNAME ftp . obsidian .co.za.

25

http IN CNAME www . obsidian .co.za.

131

CHAPTER 22. NAMED | DOMAIN NAME SERVER

pc1 IN A 192.168.2.1

pc2 IN A 192.168.2.2

30 pc3 IN A 192.168.2.3

pc4 IN A 192.168.2.4

The /var/named.local �le should look like:

@ IN SOA localhost . root . localhost . (

2000012101 ; Serial number

10800 ; Refresh every 3 hours

3600 ; Retry every hour

5 3600000 ; Expire after 42 days

259200) ; Minimum Time to Live (TTL) of 3 days

IN NS localhost .

10 1 IN PTR localhost .

The /var/named.192.168.1 �le should look like:

@ IN SOA localhost . root . localhost . (

2000012101 ; Serial number

10800 ; Refresh every 3 hours

3600 ; Retry every hour

5 3600000 ; Expire after 42 days

259200) ; Minimum Time to Live (TTL) of 3 days

IN NS localhost .

10 1 IN PTR pc1 . obsidian .co.za.

2 IN PTR pc2 . obsidian .co.za.

3 IN PTR pc3 . obsidian .co.za.

4 IN PTR pc4 . obsidian .co.za.

The /var/named.196.28.133 �le should look like:

@ IN SOA ns1 . obsidian .co.za . dnsmaster .ns1 . obsidian .co.za . (

2000012101 ; Serial number

10800 ; Refresh every 3 hours

3600 ; Retry every hour

5 3600000 ; Expire after 42 days

259200) ; Minimum Time to Live (TTL) of 3 days

IN NS ns1 . obsidian .co.za.

IN NS ns2 . obsidian .co.za.

10

1 IN PTR ns1 . obsidian .co.za.

2 IN PTR ns2 . obsidian .co.za.

3 IN PTR ftp . obsidian .co.za.

The /var/named.160.124.182.44 �le should look like:

@ IN SOA ns1 . obsidian .co.za . dnsmaster .ns1 . obsidian .co.za . (

2000012101 ; Serial number

10800 ; Refresh every 3 hours

3600 ; Retry every hour

5 3600000 ; Expire after 42 days

259200) ; Minimum Time to Live (TTL) of 3 days

IN NS ns1 . obsidian .co.za.

IN NS ns2 . obsidian .co.za.

10

132

CHAPTER 22. NAMED | DOMAIN NAME SERVER

IN PTR www . obsidian .co.za.

Run the appropriate lines:

/etc /rc.d/init .d/named start

/etc /rc.d/init .d/named stop

/etc /rc.d/init .d/named restart

You should get messages like:

Jan 21 13:41:04 ns1 named [24996]: starting . named 8.2 Fri Jan 20 11:15:20 EST 1999 ^ Iroot@ns1. obsidian.co .za:

/usr/src/bs/ BUILD /bind -8.2/ src/bin/named

Jan 21 13:41:04 ns1 named [24996]: cache zone "" (IN) loaded (serial 0)

Jan 21 13:41:04 ns1 named [24996]: Zone " obsidian.co.za " (file named .obsidian.co.za):

5 No default TTL set using SOA minimum instead

Jan 21 13:41:04 ns1 named [24996]: master zone " obsidian.co.za " (IN) loaded (serial 2000012101)

Jan 21 13:41:04 ns1 named [24996]: Zone "0.0.127. in -addr .arpa " (file named .local):

No default TTL set using SOA minimum instead

Jan 21 13:41:04 ns1 named [24996]: master zone "0.0.127. in-addr .arpa " (IN) loaded (serial 2000012101)

10 Jan 21 13:41:04 ns1 named [24996]: Zone "1.168.192. in -addr .arpa " (file named .192.168.1):

No default TTL set using SOA minimum instead

Jan 21 13:41:04 ns1 named [24996]: master zone "1.168.192. in-addr .arpa " (IN) loaded (serial 2000012101)

Jan 21 13:41:04 ns1 named [24996]: Zone "133.28.196. in-addr .arpa " (file named .196.28.133):

No default TTL set using SOA minimum instead

15 Jan 21 13:41:04 ns1 named [24996]: master zone "133.28.196. in-addr .arpa " (IN) loaded (serial 2000012101)

Jan 21 13:41:04 ns1 named [24996]: Zone "44.182.124.160. in-addr .arpa " (file named .160.124.182.44):

No default TTL set using SOA minimum instead

Jan 21 13:41:04 ns1 named [24996]: master zone "44.182.124.160. in-addr .arpa " (IN) loaded (serial 2000012101)

Jan 21 13:41:04 ns1 named [24996]: listening on [127.0.0.1].53 (lo)

20 Jan 21 13:41:04 ns1 named [24996]: listening on [192.168.3.9].53 (eth0)

Jan 21 13:41:04 ns1 named [24996]: Forwarding source address is [0.0.0.0].1060

Jan 21 13:41:04 ns1 named [24997]: Ready to answer queries .

If you have made typing errors, or named �les incorrectly, you will get appropriate error messages. Novice

administrators are want to edit named con�guration �les and restart named without checking

/var/log/messages for errors. NEVER do this.

Con�guration �le details

The top-level con�guration �le /etc/named.conf has an obvious format C style format. Comments are desig-

nated by /* */, //, or #.

The options section in our case speci�es only one parameter: the directory for locating any �les.

/usr/doc/bind-8.2/html/options.html has a complete list of options.

The lines zone "." f. . . will be present in almost all nameserver con�gurations. It tells named that the whole

Internet is governed by the �le named.ca. named.ca in turn contains the list of root nameservers.

The lines zone "0.0.127.in-addr.arpa" f. . . will also always be present. It speci�es that reverse lookups

for the IP address range 127.0.0.0{255 are stored in the �le named.local. (Note that 0.0.127 is 127.0.0

written backwards. In fact, reverse lookups are just forward lookups under the domain .in-addr.arpa.

The rest of the �le is the con�guration speci�c to our domain.

The lines zone "obsidian.co.za" f. . . says that info for forward lookups is located in the �le

named.obsidian.co.za.

The lines zone "1.168.192.in-addr.arpa" f. . . says that info for reverse lookups on the IP address range

192.168.1.0{255 is located in the �le named.192.168.1.

The lines zone "44.182.124.160.in-addr.arpa" f. . . says that info for reverse lookups on the IP address

160.124.182.44 is located in the �le named.160.124.182.44.

Domain SOA records

Each of the above named. �les has a similar format. They begin with an @ IN SOA. SOA stands for Start of Author-

ity. The hostname on the �rst line speci�es the authority for that domain, and the adjacent <user>.<hostname>

speci�es the email address of the responsible person.

The next few lines contain timeout speci�cations for cached data and data propagation across the net. These

are reasonable defaults, but if you would like to tune these values, consult the relevant documentation listed

above. The values are all in seconds.

133

CHAPTER 22. NAMED | DOMAIN NAME SERVER

The serial number for the �le (i.e. 2000012101) is used to tell when a change has been made and hence that

new data should be propagated to other servers. When updating the �le in any way, this serial number should

be incremented. The format is conventionally YYYYMMDDxx | exactly ten digits. xx begins with, say, 01 and

is incremented with each change made during a day.

It is absolutely essential that the serial number be updated whenever a �le is edited. If not,

the changes will not be reected through the rest of the Internet.

Dotted and non-dotted hostnames

If a hostname in a ends in a . then it signi�es that it a fully quali�ed hostname. If it does not end in a . then it

signi�es that the domain should be appended to the hostname. This feature is purely to make �les more elegant.

For instance, The line

ftp IN A 196.28.133.3

could just as well be written

ftp . obsidian .co.za . IN A 196.28.133.3

Always be careful to properly end quali�ed hostnames with a dot, since failing to do so causes

named to append a further domain.

Empty hostnames

An omitted hostname is substitute with the domain. The purpose of this notation is also for elegance. For

example

IN NS ns1 .obsidian .co.za.

is the same as

obsidian .co.za . IN NS ns1 .obsidian .co.za.

NS, MX, PTR, A and CNAME records

Each DNS record appears on a single line, associating some hostname/domain or IP address with some other

hostname or IP address.

It is hence easy to construct a �le that makes the Internet think anything you want it to about your organi-

sation.

The most basic type of record is the A and PTR records. They simply associates a hostname with an IP number, or

an IP number with a hostname respectively. You should not have more than one host associated to a particular

IP number.

The CNAME record says that a host is just an alias to another host. So rather have

ns1 IN A 196.28.144.1

mail1 IN CNAME ns1 . obsidian .co.za.

than,

ns1 IN A 196.28.144.1

mail1 IN A 196.28.144.1

Finally, NS and MX records,

134

CHAPTER 22. NAMED | DOMAIN NAME SERVER 22.1. CONFIGURING NAMED FOR DIALUP USE

<domain > IN NS < nameserver >

<domain > IN MX < mailserver >

just state that domain <domain> has a nameserver/mailserver <nameserver> or <mailserver> respectively.

22.1 Con�guring named for dialup use

If you have a dialup connection, the nameserver should be con�gured as what is called a caching-only nameserver.

Of course their is no such thing as a caching-only nameserver | it just means that the name. �les have only a

few essential records in them. The point of a caching server is to prevent spurious DNS lookups that may eat

modem bandwidth or cause a dial-on-demand server to initiate a dialout. It also prevents applications blocking

waiting for DNS lookup. (A typical example of this is sendmail, which blocks for couple of minutes when a

machine is turned on without the network plugged in; and netscape 4, which tries to look up the IP address of

news.<localdomain>.)

The /etc/name.conf �le should look as follows. Replace <naneserver>with the IP address of the nameserver

your ISP has given you. Your local machine name is assumed to be cericon.priv.ate. (The following listings

are minus superuous comments and newlines for the purposes of brevity):

options {

forwarders {

< nameserver >;

};

5 directory "/ var /named ";

};

zone "." { type hint ; file " named .ca "; };

zone " priv .ate " { type master ; file " named .priv .ate "; };

10 zone "0.0.127. in-addr .arpa " { type master ; file " named .local "; };

zone "168.192. in-addr .arpa " { type master ; file " named .192.168"; };

The /var/named.ca �le is the same as before. The /var/named.priv.ate �le should look like:

@ IN SOA cericon .priv .ate . root . cericon .priv .ate .

(2000012101 10800 3600 3600000 259200)

IN NS cericon .priv .ate .

cericon IN A 192.168.1.1

5 news IN A 192.168.1.2

The /var/named.local �le should look like:

@ IN SOA localhost . root . localhost .

(2000012101 10800 3600 3600000 259200)

IN NS localhost .

1 IN PTR localhost .

The /var/named.192.168 �le should look like:

@ IN SOA localhost . root . localhost .

(2000012101 10800 3600 3600000 259200)

IN NS localhost .

1.1 IN PTR cericon .priv .ate .

In addition to the above, your hostname and domainname have to be con�gured as per Chapter 21.

135

22.2. SECONDARY OR SLAVE DNS SERVERS CHAPTER 22. NAMED | DOMAIN NAME SERVER

Dynamic IP addresses

The one contingency of dialup machines is that IP addresses are often dynamically assigned. So your 192.168.

addresses aren't going to apply. Probably one way to get around this is to get a feel for what IP addresses you

are likely to get by dialling in a few times. Assuming you know that your ISP always gives you 196.26.x.x,

you can have a reverse lookup �le named.196.26 with nothing in it. This will just cause reverse lookups to fail

instead of blocking.

This is actually a bad idea because an application may legitimately need to reverse lookup in this range. The

real complete solution would involve creating a script to modify the named.conf �le and restart named upon each

dialup.

For instance, pppd (from the ppp-2.x.x package) executes a user de�ned script upon a successful dial. This

script would be run by pppd after determining the new IP address. The script should create a complete named

con�guration based on the current IP and then restart named.

In Section 23.3 we show a dynamic DNS con�guration that does this.

Both of these plans may be unnecessary. It is probably best to identify the particular application that is

causing a spurious dial-out, or causing a block, and then apply your creativity for the particular case. For

instance, in my own case, a setup had netscape taking minutes to start up | rather irritating to the user. I

immediately diagnosed that netscape was trying to do a reverse lookup of some sort. An strace revealed that

it was actually trying to �nd a news server on the local domain. Simply creating a news record pointing to the

local machine �xed the problem1.

22.2 Secondary or slave DNS servers

named can operate as a backup server to another server also called a slave or secondary server.

Like the caching-only server there is no such thing as a secondary server. Its just the same named running

with reduced info.

Lets say we would like ns2.obsidian.co.za to be a secondary to ns1.obsidian.co.za. The named.conf

�le would look as follows:

options {

directory "/ var /named ";

// query -source address * port 53;

};

5

/* The list of root servers : */

zone "." {

type hint ;

file " named .ca ";

10 };

/* Forward lookups of hosts in my domain : */

zone " obsidian .co.za " {

type slave ;

15 file " named . obsidian .co.za ";

masters {

196.28.144.1;

};

};

20

/* Reverse lookups of the localhost : */

zone "0.0.127. in-addr .arpa " {

type master ;

file " named .local ";

25 };

1Actually it could also have been �xed in the Netscape con�guration were the news server can be speci�ed.

136

CHAPTER 22. NAMED | DOMAIN NAME SERVER 22.2. SECONDARY OR SLAVE DNS SERVERS

/* Reverse lookups of local IP numbers : */

zone "1.168.192. in-addr .arpa " {

type slave ;

30 file " named .192.168.1";

masters {

196.28.144.1;

};

};

35

/* Reverse lookups of 196.28.133.* Internet IP numbers : */

zone "133.28.196. in-addr .arpa " {

type slave ;

file " named .196.28.133";

40 masters {

196.28.144.1;

};

};

45 /* Reverse lookup of 160.124.182.44 only : */

zone "44.182.124.160. in-addr .arpa " {

type slave ;

file " named .160.124.182.44";

masters {

50 196.28.144.1;

};

};

Where an entry has a \master" in it, you must supply the appropriate �le. Where an entry has a \slave" in

it, named will automatically download the �le from 196.28.144.1 (i.e. ns1.obsidian.co.za) the �rst time a

lookup is required from that domain.

An that's DNS!

137

22.2. SECONDARY OR SLAVE DNS SERVERS CHAPTER 22. NAMED | DOMAIN NAME SERVER

138

Chapter 23

Point to Point Protocol | Dialup

Networking

Dial up networking is unreliable and diÆcult to con�gure. This is simply because telephones were not designed

for data. However, considering that the telephone network is by far the largest electronic network on the globe,

it makes sense to make use of it. This is why modems were created. On the other hand the recent advent of

ISDN is slightly more expensive and a better choice for all but home dial-up. See Section 23.5 for more info.

23.1 Basic Dialup

For home use, dial up network is not all that diÆcult to con�gure. /usr/doc/HOWTO/PPP-HOWTO contains lots on

this. For my machine this boils down to creating the �les /etc/ppp/chap-secrets and /etc/ppp/pap-secrets

both containing the following line of text:

<username > * <password > *

And then running the following command at a shell prompt:

pppd connect \

"chat -S -s -v \

'' ' AT S7 =45 S0 =0 L1 V1 X4 & c1 E1 Q0 ' \

OK ATDT <tel - number > CONNECT '' \

5 name : < username > assword : '\ q< password >' \

con : ppp " \

/dev /< modem > 57600 debug crtscts modem lock nodetach \

hide - password defaultroute \

user < username >

This is a minimalists dial in command and it's speci�c to my ISP only. Don't use the exact command unless

you have an account with the Internet Solution ISP in South Africa.

The command-line options are explained as follows:

connect <script> This is the script that pppd is going to use to start things up. When you use a modem

manually (as you will be shown further below), you need to go through the steps of initialising the modem,

causing a dial, connecting, logging in, and �nally telling the remote computer that you would like to

start modem data communication mode, called the point to point protocol, or PPP. The <script> is the

automation of this manual procedure.

chat -S -s -v <expect> <send> <expect> <send> ... This is the <script> proper. chat has a man page

and other uses besides with modem communications. -S means to log messages to the terminal and not to

SYSLOG; -s means to log to stderr; -v means verbose output. After the options, comes a list of things

the modem is likely to say, alternated with appropriate responses. This is called an expect{send sequence.

The AT S7=... sequence initialises the modem to something we would like. For many modems this could

just be ATZ. What works best for your modem can be discovered by looking in the manual that came with

139

23.1. BASIC DIALUP CHAPTER 23. PPP

it. It will talk about the AT command set in detail and is essential reading for anyone doing serious PPP

work. nq means to not print the password amidst the debug output | very important.

/dev/tty?? This tells the device you are going to use. This will usually be /dev/ttyS0, /dev/ttyS1,

/dev/ttyS2 or /dev/ttyS3.

57600 The speed the modem is to be set to. This is only the speed between the PC and the modem, and has

nothing to do with the actual data throughput. It should be set as high as possible except in the case of

very old machines whose serial ports may possibly only handle 38400.

debug is to output debug information. This is useful for diagnosing problems.

crtscts Use hardware ow control.

modem Use modem control lines. This is actually the default.

lock Create a UUCP style lock �le in /var/lock/. This is just a �le of the form /var/lock/LCK..tty?? that

tells other applications that the serial device is in use. For this reason, you must not call the device

/dev/modem or /dev/cua?.

nodetach Don't go into the background. This allows you to watch pppd run and stop it with ^C.

defaultroute Create an IP route after PPP comes alive. Henceforth, packages will go to the right place.

hide-password Do not show the password in the logs. This is important for security.

user <username> Speci�es the line from the /etc/ppp/chap-secrets and /etc/ppp/pap-secrets �le to use.

There is usually only one.

23.1.1 Determining your chat script

To determine the list of expect{send sequences, you need to do a manual dial in. The command

dip -t

stands for dial-IP and talks directly to your modem.

The following session demonstrates a manual dial for user psheer. Using dip manually like this is a game of

trying to get the garbage lines you see below: this is PPP starting to talk. When you get this junk you have

won, and can press ^C. Then paste your session for future reference.

[root@cericon root]# dip -t

DIP : Dialup IP Protocol Driver version 3.3.7 o-uri (8 Feb 96)

Written by Fred N. van Kempen , MicroWalt Corporation .

5 DIP > port ttyS0

DIP > speed 57600

DIP > term

[Entering TERMINAL mode . Use CTRL -] to get back]

ATDT4068500

10 CONNECT 26400/ ARQ /V34 /LAPM / V42BIS

Checking authorization , lease wait ...

name :psheer

password :

15 c2-ctn -icon :ppp

Entering PPP mode .

Async interface address is unnumbered (FastEthernet0)

Your IP address is 196.34.157.148. MTU is 1500 bytes

20 ~y}#A!}! e } }3}"}&} }*} } }~}&4}2 Iq }'}"}(}" N$ ~~y}#A!}! r } }4}"}&} }

[Back to LOCAL mode .]

DIP > quit

You have mail in / var /spool /mail /root

[root@cericon root]#

Now you can modify the above chat script as you need. The kinds of things that will di�er are trivial: like having

login: instead of name:. Some also require you to type something instead of ppp, and some require nothing to

be typed after your password.

140

CHAPTER 23. PPP 23.1. BASIC DIALUP

23.1.2 CHAP and PAP

You may ask why there are /etc/ppp/chap-secrets and /etc/ppp/pap-secrets �les if a username and pass-

word is already speci�ed inside the the chat script. CHAP (Challenge Handshake Authentication Protocol) and

PAP (Password Authentication Protocol) are authentication mechanisms used after logging in | in other words,

somewhere amidst the ~yg#A!g!eg g3g"g&g g*g g g~g&4g2Iqg'g"g(g"N$~~yg#A!g!rg g4g"g&g g.

23.1.3 Running pppd

If you run the pppd command above, you will get output something like this:

send (AT S7 =45 S0 =0 L1 V1 X4 & c1 E1 Q0^M)

expect (OK)

AT S7 =45 S0 =0 L1 V1 X4 &c1 E1 Q0^M^M

OK

5 -- got it

send (ATDT4068500^M)

expect (CONNECT)

^M

10 ATDT4068500 ^M^M

CONNECT

-- got it

send (^ M)

15 expect (name :)

45333/ ARQ/V90/LAPM / V42BIS ^M

Checking authorization , Please wait ...^ M

username:

-- got it

20

send (psheer ^M)

expect (assword :)

psheer ^M

password:

25 -- got it

send (??????)

expect (con :)

^M

30 ^M

c2-ctn-icon :

-- got it

send (ppp ^M)

35 Serial connection established .

Using interface ppp0

Connect : ppp0 <--> / dev/ttyS0

sent [LCP ConfReq id=0 x1 < asyncmap 0 x0 > < magic 0 x88c5a54f > < pcomp > < accomp >]

rcvd [LCP ConfReq id=0 x3d < asyncmap 0 xa0000 > < magic 0 x3435476c > < pcomp > < accomp >]

40 sent [LCP ConfAck id=0 x3d < asyncmap 0 xa0000 > < magic 0 x3435476c > < pcomp > < accomp >]

rcvd [LCP ConfAck id=0 x1 < asyncmap 0 x0 > < magic 0 x88c5a54f > < pcomp > < accomp >]

sent [IPCP ConfReq id =0 x1 < addr 192.168.3.9> < compress VJ 0f 01>]

sent [CCP ConfReq id=0 x1 < deflate 15> < deflate (old #) 15> < bsd v1 15>]

rcvd [IPCP ConfReq id =0 x45 < addr 168.209.2.67>]

45 sent [IPCP ConfAck id =0 x45 < addr 168.209.2.67>]

rcvd [IPCP ConfRej id =0 x1 < compress VJ 0f 01>]

sent [IPCP ConfReq id =0 x2 < addr 192.168.3.9>]

rcvd [LCP ProtRej id=0 x3e 80 fd 01 01 00 0 f 1a 04 78 00 18 04 78 00 15 03 2 f]

rcvd [IPCP ConfNak id =0 x2 < addr 196.34.157.131>]

50 sent [IPCP ConfReq id =0 x3 < addr 196.34.157.131>]

rcvd [IPCP ConfAck id =0 x3 < addr 196.34.157.131>]

local IP address 196.34.25.95

remote IP address 168.209.2.67

Script / etc /ppp/ip-up started (pid 671)

55 Script / etc /ppp/ip-up finished (pid 671), status = 0 x0

Terminating on signal 2.

Script / etc /ppp/ip-down started (pid 701)

sent [LCP TermReq id=0 x2 " User request "]

rcvd [LCP TermAck id=0 x2]

You can see the expect{send sequences working, so its easy to correct if you made a mistake somewhere.

At this point you might want to type route -n and ifconfig in another terminal:

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

168.209.2.67 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

5 0.0.0.0 168.209.2.69 0.0.0.0 UG 0 0 0 ppp0

lo Link encap :Local Loopback

inet addr :127.0.0.1 Mask :255.0.0.0

UP LOOPBACK RUNNING MTU :3924 Metric :1

RX packets :2547933 errors :0 dropped :0 overruns :0 frame :0

5 TX packets :2547933 errors :0 dropped :0 overruns :0 carrier :0

collisions :0 txqueuelen :0

ppp0 Link encap :Point -to-Point Protocol

inet addr :196.34.25.95 P-t-P :168.209.2.67 Mask :255.255.255.255

10 UP POINTOPOINT RUNNING NOARP MULTICAST MTU :1500 Metric :1

141

23.2. DIAL ON DEMAND CHAPTER 23. PPP

RX packets :7 errors :0 dropped :0 overruns :0 frame :0

TX packets :7 errors :0 dropped :0 overruns :0 carrier :0

collisions :0 txqueuelen :10

This clearly shows what pppd has done: both creating a network device as well as a route to it.

If your name server is con�gured, you should now be able to ping metalab.unc.edu or some well known host.

23.2 Dial on demand

Dial-on-demand really just envolves adding the demand option to the pppd command-line above. The other way

of doing dial-on-demand is using the diald package, but here we discuss the pppd implementation.

With the demand option, you will notice that spurious dial-outs take place. You need to add some �ltering

rules to ensure that only the services you are interested in cause a dial-out. This is not ideal since there is still

the possibility of other services connecting on ports outside of the 1-1024 range. In addition you should also

make sure there are no services running except the ones you are interested in.

A �rewall script might look as follows. This uses the old ipfwadm command possibly called

/sbin/ipfwadm-wrapper on your machine1 The ports 21, 22, 25, 53, 80, 113 and 119 represent ftp, ssh

(Secure Shell), smtp (Mail), domain (DNS), www, auth and nntp (News) services respectively. The auth service

is not needed, but should be kept open so that connecting services get a failure instead of waiting for a timeout.

You can comment out the auth line in /etc/inetd.conf for security.

enable ip forwarding and dynamic address changing

echo 1 > / proc /sys /net /ipv4 /ip_forward

echo 1 > / proc /sys /net /ipv4 /ip_dynaddr

5 # clear all firewall rules

/sbin / ipfwadm -O -f

/sbin / ipfwadm -I -f

Allow all local comms

10 /sbin / ipfwadm -O -a accept -P tcp -D 192.168.0.0/16

/sbin / ipfwadm -O -a accept -P udp -D 192.168.0.0/16

/sbin / ipfwadm -O -a accept -P tcp -D 127.0.0.0/24

/sbin / ipfwadm -O -a accept -P udp -D 127.0.0.0/24

/sbin / ipfwadm -I -a accept -P tcp -D 192.168.0.0/16

15 /sbin / ipfwadm -I -a accept -P udp -D 192.168.0.0/16

/sbin / ipfwadm -I -a accept -P tcp -D 127.0.0.0/24

/sbin / ipfwadm -I -a accept -P udp -D 127.0.0.0/24

allow ports outgoing

20 /sbin / ipfwadm -O -a accept -P tcp -D 0.0.0.0/0 20 21 22 25 53 80 119

/sbin / ipfwadm -O -a accept -P udp -D 0.0.0.0/0 53

restrict all other ports outgoing

/sbin / ipfwadm -O -a deny -P tcp -D 0.0.0.0/0 1:1024

25 /sbin / ipfwadm -O -a deny -P udp -D 0.0.0.0/0 1:1024

allow ports incoming

/sbin / ipfwadm -I -a accept -P tcp -D 0.0.0.0/0 22 113

30 # restrict all other ports

/sbin / ipfwadm -I -a deny -P tcp -D 0.0.0.0/0 1:1023

/sbin / ipfwadm -I -a deny -P udp -D 0.0.0.0/0 1:1023

deny anything else

35 /sbin / ipfwadm -I -a deny -P icmp -D 0.0.0.0/0

/sbin / ipfwadm -O -a deny -P icmp -D 0.0.0.0/0

IP masquerading can be done with:

Masquerade the domain 192.168.2.0/255.255.128.0

/sbin / ipfwadm -F -f

1The newer ipchains command is soon to be superceded by a completed di�erent packet �ltering system in kernel 2.4 hence I

see no reason to change from ipfwadm at this point.

142

CHAPTER 23. PPP 23.3. DYNAMIC DNS

/sbin / ipfwadm -F -p deny

/sbin / ipfwadm -F -a m -S 192.168.0.0/17 - D 0.0.0.0/0

The pppd script becomes (note that you need pppd-2.3.11 or later for this to work as I have it here):

pppd connect \

"chat -S -s -v \

'' ' AT S7 =45 S0 =0 L1 V1 X4 & c1 E1 Q0 ' \

OK ATDT <tel - number > CONNECT '' \

5 name : < username > assword : '\ q< password >' \

con : ppp " \

/dev /ttyS0 57600 debug crtscts modem lock nodetach \

hide - password defaultroute \

user < username > \

10 demand \

:10.112.112.112 \

idle 180 \

holdoff 30

23.3 Dynamic DNS

(See also Chapter 22 for other named setups, and Chapter 21 for con�guring your machine's DNS lookups.)

Having pppd give IP connectivity on demand is not enough. You also need to your DNS con�guration to

change dynamically to reect the current IP address that your ISP would have assigned you.

Now on creation of a connection, pppd runs /etc/ppp/ip-up, which in turn runs /etc/ppp/ip-up.local.

Creating /etc/ppp/ip-up.local as the following script, correctly sets up bind. This script assumes that you

have one eth0 interface with the IP 192.168.1.1 and that this interface is the gateway for a LAN of four

machines masq-a, masq-b, masq-c and masq-d. The domain name of your LAN should be some non-existing

name like my-lan.priv.

#!/ bin/sh

$1 $2 $3 $4 $5 $6

interface-name tty-device speed local -IP-address remote -IP- address ipparam

5

mkdir / etc/named -dynamic / >& / dev/null

SERIAL =` expr 2000000000 + \` date '+% s '\` / 10`

IP=$4

10 ARPA =` echo $IP | cut -f4 -d.`.` echo $IP | cut - f3 -d.`.` echo $IP | cut - f2 -d.`.` echo $IP | cut -f1 -d.`

NAMESERVER =< name -server -of -your -isp >

HOST =` hostname | cut -f1 -d.`

DOMAIN =` hostname | cut -f2 ,3,4,5,6 - d.`

15 cat > / etc/resolv .conf << EOF

search $DOMAIN

nameserver 127.0.0.1

options timeout :18 attempts :4

EOF

20

cat > / etc/host .conf << EOF

order hosts ,bind

multi on

EOF

25

cat > / etc/named .conf << EOF

options {

forwarders { $NAMESERVER ; }; directory "/ etc/named -dynamic /";

dialup yes ; notify no ; forward only

30 };

zone "." { type hint ; file " named .ca "; };

zone "0.0.127. in-addr .arpa " { type master ; file " named .local "; };

zone "1.168.192. in-addr .arpa " { type master ; file " named .192.168.1"; };

zone " $ARPA .in-addr .arpa " { type master ; file " named .$IP "; };

35 zone " $DOMAIN " { type master ; file " named .$DOMAIN "; };

EOF

cat > / etc/named -dynamic /named . local << EOF

@ IN SOA localhost . root .localhost . ($SERIAL 28800 14400 3600000 345600)

40 IN NS localhost.

1 IN PTR localhost.

EOF

cat > / etc/named -dynamic /named .ca << EOF

45 . 3600000 IN NS A.ROOT -SERVERS .NET.

A.ROOT - SERVERS .NET . 3600000 A 198.41.0.4

. 3600000 NS B.ROOT -SERVERS .NET.

B.ROOT - SERVERS .NET . 3600000 A 128.9.0.107

. 3600000 NS C.ROOT -SERVERS .NET.

50 C.ROOT - SERVERS .NET . 3600000 A 192.33.4.12

. 3600000 NS D.ROOT -SERVERS .NET.

D.ROOT - SERVERS .NET . 3600000 A 128.8.10.90

. 3600000 NS E.ROOT -SERVERS .NET.

E.ROOT - SERVERS .NET . 3600000 A 192.203.230.10

55 . 3600000 NS F.ROOT -SERVERS .NET.

F.ROOT - SERVERS .NET . 3600000 A 192.5.5.241

. 3600000 NS G.ROOT -SERVERS .NET.

G.ROOT - SERVERS .NET . 3600000 A 192.112.36.4

. 3600000 NS H.ROOT -SERVERS .NET.

143

23.4. USING TCPDUMP TO WATCH YOUR CONNECTION CHAPTER 23. PPP

60 H.ROOT - SERVERS .NET . 3600000 A 128.63.2.53

. 3600000 NS I.ROOT -SERVERS .NET.

I.ROOT - SERVERS .NET . 3600000 A 192.36.148.17

. 3600000 NS J.ROOT -SERVERS .NET.

J.ROOT - SERVERS .NET . 3600000 A 198.41.0.10

65 . 3600000 NS K.ROOT -SERVERS .NET.

K.ROOT - SERVERS .NET . 3600000 A 193.0.14.129

. 3600000 NS L.ROOT -SERVERS .NET.

L.ROOT - SERVERS .NET . 3600000 A 198.32.64.12

. 3600000 NS M.ROOT -SERVERS .NET.

70 M.ROOT - SERVERS .NET . 3600000 A 202.12.27.33

EOF

cat > / etc/named -dynamic /named .$IP << EOF

@ IN SOA localhost . root .localhost . ($SERIAL 28800 14400 3600000 345600)

75 IN NS $HOST .$DOMAIN .

IN PTR $HOST .$DOMAIN .

EOF

cat > / etc/named -dynamic /named .192.168.1 << EOF

80 @ IN SOA localhost . root .localhost . ($SERIAL 28800 14400 3600000 345600)

IN NS $HOST .$DOMAIN .

1 IN PTR $HOST .$DOMAIN .

2 IN PTR masq -a. $DOMAIN .

3 IN PTR masq -b. $DOMAIN .

85 4 IN PTR masq -c. $DOMAIN .

5 IN PTR masq -d. $DOMAIN .

EOF

cat > / etc/named -dynamic /named . $DOMAIN << EOF

90 @ IN SOA localhost . root .localhost . ($SERIAL 28800 14400 3600000 345600)

IN NS $HOST .$DOMAIN .

$HOST IN A $IP

masq -a IN A 192.168.1.2

masq -b IN A 192.168.1.3

95 masq -c IN A 192.168.1.4

masq -d IN A 192.168.1.5

EOF

killall -1 named

The options dialup yes; notify no; forward first tell bind to use the link as little as possible; not send

notify messages (there are no slave servers on our LAN to notify; and try forward requests to the name server

under forwarders before trying to answer them itself; respectively.

There is one problem with this con�guration. Queued DNS requests are ushed when the con�guration is

reread with killall -1 named. When you try, say ftp sunsite.unc.edu, the �rst DNS request by ftp causes

a dial-out, but then is discarded. The next DNS request (18 seconds later | options timeout:18 attempts:4)

also doesn't make it (dial-outs take more than 30 seconds on my machine). Only the third request gets through.

What is really needed is a DNS program designed especially for masquerading dynamically-assigned-IP servers.

The above scripts are probably over-kill, so use them sparingly. For example, there is probably no application

that really needs forward and reverse lookups on the ppp0 device, hence you can do with a DNS con�guration

that doesn't need restarting on every dial-out. The bind documentation promises better support for dialup

servers in the future.

There is a further option: that is to use the dnrd, a DNS package especially for dial-out servers. It was not

created with dial-on-demand in mind though, hence it has some limitations.

23.4 Using tcpdump to watch your connection

If a dial out does occur unexpectedly, you can run tcpdump to dump packets going to your ppp0 device. This

will probably highlight the error. You can then look at the TCP port of the service and try to �gure out what

process the packet might have come from. The command is:

tcpdump -n -N -f -i ppp0

tcpdump is also discussed in Section ??.

23.5 Using ISDN instead of Modems

A lot of companies will see a regular modem as the best way to get connected to the Internet. Because ISDN is

considered esoteric, they may have not looked at it as an option. In fact ISDN is preferable everywhere except

for single user dial-up (i.e. home use).

For those who are not familiar with ISDN, this paragraph will give you a quick summary. ISDN stands for

Integrated Services Digital Network. ISDN lines are like regular telephone lines, except that an ISDN line comes

with two analogue and two digital channels. The analogue channels are regular telephone lines in every respect

144

CHAPTER 23. PPP 23.5. USING ISDN INSTEAD OF MODEMS

| just plug your phone in and start making calls. The digital lines each support 64 kilobits/second data transfer

| only ISDN communication equipment is meant to plug into these. To communicate over the digital line you

need to dial an ISP just like with a regular telephone. Now it used to be that only very expensive ISDN routers

could work with ISDN, but ISDN modems and ISDN ISA/PCI cards have become cheap enough to allow anyone

to use ISDN, while most telephone companies will install an ISDN line as readily as a regular telephone line. So

you may ask whats with the \Integrated Services". I suppose it was thought that this service, in both allowing

data as well as regular telephone, would be the ubiquitous communications service. This remains to be seen.

If you have a hundred ISDN boxes to setup, it would be well worth it to buy internal ISDN cards: they are

really low priced these days. Con�guring these is not covered here for now. However, if you have one ISDN box

to con�gure and no clue about ISDN, an internal card is going to waist your time. In this case a ISDN external

modem is the best option. These are devices designed as drop in replacements to a normal external modem |

they plug into your serial port and accept (probably ignore) the same AT command strings as a normal modem.

Although these are supposed to be drop in replacements, ISDN is a completely di�erent technology. In

particular, there are di�erent protocols for di�erent countries which have to be speci�ed to the card. I myself

have not ever had to set up ISDN, but the advice I get so far is:

For an Asyscom modem running on a particular ISP here in South Africa we had to enter the AT commands:

ATB4

ATP =17

and also add asyncmap 0x00000000 to the pppd command-line.

Also ATDTXXXXXXX should become just ATDXXXXXXX.

Another source of info recommends for Zyxel modems ATB20 for V.120 Standard LAPD and euro DSS1

protocols, and ATB40 for 64K sync PPP used with CISCO ISP equipment. And then also

AT&ZI4 =0

AT&W0

ATZ0

This should give you an idea of what you may have to change to get ISDN working, it is by no means a

product endorsement.

Be weary when setting up ISDN. ISDN dials really fast. It can dial out a thousand times in a few minutes which

is expensive.

145

23.5. USING ISDN INSTEAD OF MODEMS CHAPTER 23. PPP

146

Chapter 24

Case Example A with General

Recommendations in the Field

Although a theoretical understanding of Unix is entertaining reading, most readers will be interested in how to

apply their con�guration knowledge in an actual situation. What is typical is that a would-be administrator has

no-idea-where-to-start.

This seems to be a bottleneck in the learning of Unixadministration | few are willing to coach the student

in real life situations.

The case studies given here will give an idea of how this all �ts together in practice.

24.1 University of the Western Cape, Laboratories, South Africa

The University of the Western Cape (UWC) pharmacy department conduct experiments on frogs legs. They stu�

some chemical into the frog (or other) muscle tissue and measure the contraction. Their in-house electronics shop

has produced force meters (transducers) and have an Eagle Electronics PC30F Universal IO ISA card (otherwise

known as a multi-channel Analogue to Digital Converter ADC).

In other words, the force meter sends a signal to this ISA card which can then be read digitally by some

software.

They have no computer facilities at all in this laboratory. They require some setup that each of eight students

can monitor their own experiment simultaneously. They also need their post-graduate research programs to be

able to monitor 16 simultaneous experiments from one machine.1

I suggested a network of machines dual booting Linux and Windows (they require to run other software).

Their original idea was to buy an ADC card for each machine. These are very expensive. Of course it would

be rather trivial to read the data over a network. The contractions themselves need to be sampled at 1 second

intervals only.

The project looked like it had four distinct parts:

Networking and installation of PC's.

Installation and con�guration of Linux.

Writing of the low level ADC driver.

Writing of a graphical interface to read ADC values over the network and display them.

1UWC originally approached the biomedical research department of the University of the Cape Town, requesting a student to

write software to monitor their experiments. Of course, as is always the case with clients, they did not anticipate the breadth of the

project | it is not a software project per se. A friend of mine got wind of the project, which then came to me informally.

147

24.2. SPEC AND QUOTE CHAPTER 24. CASE EXAMPLE A

24.2 Spec and quote

Most companies require detailed speci�cations and contracts to be drawn before entering a project. This however

can consume as much time as the project itself2. I prefer to loosely specify what the system has to do, then

gauge intuitively the amount of time it will take to meet the expectation of the client, regardless of what the

client thinks the system needs to do.

This means having to estimate what the client wants to feel about the completed project. You must tactfully

discuss their vision to read the result you yourself would like in their position.

It is also important to de�ne to yourself what the client doesn't know, without making them feel insecure

about their ignorance. Also remember that its no use trying to teach your client, although any information you

give them must always open up new possibilities, and never close them.

Clients should never be told what isn't possible. Present options rather than limitations, but never confuse

them with decisions.

You must give yourself enough leeway to implement

the little features that the client never thought of, and

enough extra time to make things generic enough to

be reused for other clients. Never do the absolute

minimum.

In this case, the responsible person merely had an idea that his current processes needed computer automation.

To negotiate a speci�cation would have been too tedious. He imagined an application that would calibrate, graph

and save recorded data. Because I know that it is simple enough to come up with a generic application that does

more than he needs, I am not going to go into details about what it doesn't need to do.

The project was quoted at 60 hours. Our company rates are rather cheep | $40 per hour (at Jan 2000)

excluding VAT (i.e. tax).

24.3 Dealing with Universities

Dealing with Universities (Colleges) is di�erent from dealing with small companies. Some points to note are:

Universities are very large organisations. They are necessarily very bureaucratic. Although this may seem

like a hindrance to your job, you must realise that every task conceivable has a person assigned to it, and

a person to supervise that person. To get anything done, its just a matter of �nding out which person is

responsible. Any line of questioning should aim to try �nd out the conventions of delegation, rather than

actually trying to get anything done.

Any organisation of any appreciable size will have its own IT department.

An IT department's main activity is telling people what to click on when things don't work. Hence most

of the sta� are trained in this area only. Under no circumstances question them on an issue they don't

understand it will create unnecessary confusion.

An IT department will never have more than one person who actually knows how the whole LAN �ts

together. Because the remainder of the department doesn't need to, they won't know who that person is

either.

Any appreciably sized organisation will have a single supplier of computer hardware.

Universities don't need to show a pro�t. The people they employ rarely have business experience. These

people are afraid on one hand, and careless on the other.

The IT department may only know about proprietary software.

2This is obviously not true with very large projects, but then you would charge for the drawing up and negotiation of the spec as

well.

148

CHAPTER 24. CASE EXAMPLE A 24.4. NETWORKING 8 MACHINES

The question to ask to �nd out any issue about the current network setup is simple: \Who is in charge of

your DNS server". This person will necessarily know enough about the LAN to at least tell you who else to

speak to. Don't be afraid to go hunting for that person on foot | he may be on lunch.

Another question to ask is \I need a new network point | who do I speek to?". Asking questions that have

been asked before is the key, even if that's not what you really need done. In this case I needed to know

about the routing | a person who would install network points would necessarily know who would know about

routing.

Finally, you should be careful to always show that you have the University's best interests at heart. Busi-

nessman have an ethic of balancing risk, price and good-will. Academia, however, are naive and need more to

feel secure.

24.4 Networking 8 Machines

The hardware was supplied by the IT department, which did a very nice job of installing an excess of network

points, and running Windows in a �rst partition. The network uses DHCP and has a DHCP server.

Because the Linux boxen need to communicate with each other, they need to know their IP addresses.

DHCP addresses expire if the machine has been inactive for some time. Hence the LAN needed to have statically

allocated IP addresses. This was a good excuse to put the LAN on its own segment (i.e. having a dedicated hub,

with one machine having two network cards to route to the rest of the network.)

In general, it is a very bad idea to try get Linux boxes working on the same segment as many Windows

machines. Try to get your Linux LAN on its own segment at all costs | in fact, it is better to make it a

requirement of the project. In the �rst place, it enables you to �rewall the segment for security, and second it

enables you to deal exclusively with TCP traÆc. (This does mean IPX will not be able to communicate with

the rest of the LAN by default.) Finally, from an administration point of view, you can setup your Linux boxes

anyway you like, and have control over mail and DNS, since only one machine has to interface with the rest of

the LAN. You then never have to deal with someone else's DNS/Mail/etc. server being down. When you have

network problems, you can be sure they are yours.

The IT department may also not know that networks can be isolated from each other with routers made from

old 486 boxes, or in this case, using one of the workstations. Be careful to explain that isolating the segment will

cost them nothing extra besides a hub and a network card.

24.5 Installation and con�guration of Linux

The machines each had stock standard hardware (fortunately). Hardware can be a major problem. Although

a large organisation will probably be bent on particular brands (usually the popular well supported ones), you

may run into a ock of machines that have an unsupported video card. Don't try explain to them that they need

to be sure that the hardware is supported beforehand | usually the supplier won't even know. Its better to get

them to order it anyway, with the warning that extra hardware may need to be purchased. Most suppliers have

a 7 or 30 day money back guarantee, so you can get those graphics cards replaced with (possibly slightly more

expensive) other ones.

Some things to specify are:

Graphics cards must be exactly 2 Megabytes. (Over 2 megabytes is silly | see Section ***). This is

because you want to run 1024x768 in 16 bit colour. A true colour display at 1024x768 is essential for X.

Mice must be three button for X.

Machines must be entry level (bottom of the range). Since any even entry level machine is a huge excess

for running Linux, there is no point to anything else.

Order no less that 32 megabytes RAM for decent X performance.

149

24.6. WRITING OF THE LOW LEVEL ADC DRIVER CHAPTER 24. CASE EXAMPLE A

Never underestimate the time it is going to take you

to con�gure hardware and basic OS setup. Its the

little basic things that can take days when you have

lots of machines.

The machines were set up as follows:

Machines were numbered 1 through 8 and given IP address 192.168.1.machine.

Machine 1 was designated a \server". It was setup so that reverse and forward lookups worked for the

192.168.1.??? IP addresses. Reverse and forward lookups on the local LAN is an essential �rst step.

rsh was set up on each machine so that commands could be issued to the whole LAN to make further

administration easy. A script was written to rsh a command to all machines.

YP services where enabled (NIS: see the NIS-HOWTO) so that logins could be made anywhere on the LAN.

NFS was setup so that the /home directory would be mounted on boot from the server.

X was setup as the default run level.

IP forwarding and masquerading was enabled on the server. Its second network card was given a static IP

address issued from the IT department. This enabled all machines to access the web.

With the server having an InkJet printer attached, LPRng <http://www.astart.com/lprng/LPRng.html>

was installed for printing. I had diÆculty getting ordinary lpd to work, so this was installed instead. This

package also allows the print �lter to reside on the server only.

The LAN was now setup for use. Users could be added on the server, and seamlessly login anywhere, and use

web, and oÆce applications, with print jobs defaulting to the right place.

24.6 Writing of the low level ADC driver

The ADC card came with plenty of detailed documentation. To write a driver for new hardware requires intimate

knowledge of C and a good idea of kernel programming. However, I had telephoned the manufacturers (who were

conveniently in the same city) who had explained that a polling driver was relatively simple.

The excellent documentation provided with the card allowed me in a few hours to write C code to read ADC

values from the test apparatus provided by UWC's Pharmacy workshop.

The next step was to write a daemon program to serve these values to the network. The listing is given

in Appendix *** (390 lines). The program uses a single thread in order not to have two connections doing IO

operations on the card simultaneously. The values it serves are textual in order that it can be tested by easily

telneting to the port and typing in channel requests. The code e�ectively allows any channel to be read from

anywhere, hence the same channel can really be read by many remote processes.

24.7 Writing of a graphical interface

The gnome-python package that comes with Gnome provides an example use of Gnome Canvas. Gnome Canvas

is a Gnome widget that allows arbitrary �gure objects to be drawn and manipulated in a window. It is ideal for

creating a simple graphing package. Python socket calls can then read ADC values by connecting to the server.

The listing for this program is given in Appendix *** (480 lines).

The program can graph multiple channels simultaneously. Hence UWC would be able to meet both their

requirements of monitoring multiple channels on one machine or single channels on several machines. It auto-

matically scales the graphs to �t in the window and allows the sample frequency to be set. Graphs can be saved

as tab separated lists for import into a spread sheet.

The program also does least squares �tting on a line of calibration points allowing the transducer to be

accurately calibrated.

150

CHAPTER 24. CASE EXAMPLE A 24.8. SPECIFICATIONS

24.8 Speci�cations

The nice thing about free software is that I can sell me little installation over and over now that I have done it.

Here is the complete speci�cation that I might advertise to other clients:

Obsidian Network IO UtilityTM

Product Summary: Allows a single multichannel ADC card to support simultaneous data capturing programs

running remotely on a TCP/IP network. A single ADC card can support multiple remote capture points

to allow data to be monitored across a network.

Hardware requirements: Eagle PC30F. Entry level PC's, or at least PIII 300 MHz. Non-PC Unix worksta-

tions on special request.

Software requirements: All software included. No requirements.

Application functions: Real time graphing of multiple channels. Calibration. Auto scaling of data to window

size. Up to 16 channels.

Data rate: 400Hz for single channel view; 100Hz for 4 channel view; 50Hz for 8 channels view. Higher rates on

special request up to the limits of the IO card and network.

Data save format: Time stamped tab delimited ASCII. Other formats on special request.

Server: Supports an arbitrary number of client applications, each reading multiple channels over TCP/IP.

Multiple clients can read the same channels.

Development platform: GNU/Linux with Gnome GUI.

151

24.8. SPECIFICATIONS CHAPTER 24. CASE EXAMPLE A

152

Chapter 25

Case Example B

An certain IT company services the needs of a large number of retail vendors.

They have been running SCO Unix for some time, but switched to Linuxwhen they discovered its seemless

SCO binary emulation.

Their current situation is several hundred dial-in machines spread throughout South Africa and neighbouring

countries. Each one runs a Linuxmachine with several WYSE1 character terminals and one or more character

printers. They run a proprietary package called Progress which they have licensed at enormous cost. Progress is

a database system with a character interface that serves as a Point-Of-Sale terminal and accounting solution.

Each machine has a rather arcane menu interface that does various common administration functions.

The machines are scripted to nightly communicate with a centralised server. Somewhere a further centralised

IBM AS/400 also comes into play.

The company desires to have an X Windows interface on all their machines. With this, they want to enable

mail and web access for all the vendors.

The existing text based interface to Progress must also be preserved through an X terminal emulator.

They themselves have a call centre and intend to install, ship and support the machines. I was to provide an

master installation machine from where many machines could be replicated.

25.1 Overall Con�guration

The machines run on or more Chase ISA serial port cards2. These required con�guration on boot. The only

other specialised hardware was the \LS120" oppy disks that the company uses for backup purposes (instead of

tapes). These are ATAPI IDE oppy disks that support 1.44 Megabyte 3.5' oppy disks as well as 120 Megabyte

oppy disks | basically involving symlinking /dev/fd0 to /dev/hdc.

X Windows was con�gured to run in 1024x768 at 16 bit colour.

The machines were enabled for dialup to an ISP. Their ISP provided a single nationwide telephone number.

The machines are intended for a single user to sit at the console and use the Internet, so I recommended against

dial-on-demand | rather give the user power to dial in or hang up as necessary, in full knowledge that they are

accruing a telephone bill.

The text based menu system system was rewritten with dialog and gdialog. Hence users logging in via

terminals would see the identical interface (albeit text-based) to those logging in on the X console. The text

menu system would execute as the last script in /etc/profile.d provided they were attached to a terminal (i.e.

not an X login) (see man tty). The icewm window manager has a clean menu �le that allows con�guration of the

window managers \Start" menu. Selections under the \Start" button are identical to the text menu seen when

logging in via a character terminal. A nice trick is to write a C program front end to gdialog and dialog that

uses the ttyname(0) system call to check if it is attached to a terminal, and then invokes the correct program.

I called this new command vdialog.

1Brand of character terminal.
2The preferred brand of the client.

153

25.2. SETUID SCRIPTS AND SECURITY CHAPTER 25. CASE EXAMPLE B

Users also have several di�erent privilege levels, and each should only see their allowed menu selections. Hence

the menus are created dynamically on login. Note that the users' ignorance of the system was considered an

adequate security measure | their are no real privilege levels.

A Netscape /.netscape was created to be copied into the users home directory with his personal settings

ready on �rst login.

Dial-ins were accompanied by fetching a user list from a master server; adding the appropriate users; then

fetching their mail by pop using fetchmail; and simultaneously doing exim -qf to ush the pending mail queue.

The master server acts as a mail, pop and DNS server.

exim was con�gured to deliver local mail immediately and defer outgoing mail. In addition message size was

limited to 2 megabytes and an outgoing MIME �lter was written to strip audio, video and image attachments.

The same �lter is applied on the server side for incoming messages.

printcap was con�gured with lp as the default printer for their dot-matrix printers, using a �lter created

by printtool. A second printer, fax, sent jobs through a custom �lter that brought up a gdialog --inputbox

on the current X display to request a telephone number from the user. It then converted the PostScript �le

(through several di�erent formats as needed) into the appropriate format for sendfax. Unfortunately, at the

time of implementation, sendfax did not support sending the `From' telephone number in the fax protocol, but

this was acceptable to the client. I also added a .printer �le to the users home directory. This was read on

startup to set the PRINTER environment variable. Users had a menu option to set this to any of /dev/ttyS4

through /dev/ttyS20.

Finally, uucp was setup for incoming calls, since an additional master server existed that would expect the

vendor to answer and provide a uucp login. An nice trick is to run uuchk which dumped the con�g on the

previous older system. When the uuchk output on the new system matched the old, we could be sure that things

were cool with the uucp setup.

25.2 setuid scripts and security

There are several areas where writing a C program was unavoidable or just too convenient to pass over. The

vdialog utility mentioned above was one.

Users have a menu selection to execute-a-dial-in-and-exchange-mail. This runs a generic script which dials in

and runs fetchmail and exim -qf. The script is one of a few that must obviously run as root.

The simplest solution is to make a C program that has its sticky bit set with chown a+s <filename>. The

program itself is simply:

include < stdlib .h>

include < unistd .h>

include < sys /types .h>

5 int main (int argc , char ** argv)

{

int p;

setuid (geteuid ()); /* Set the actual user and group */

setgid (getegid ()); /* to that of the sticky ones . */

10 p = system ("/ etc /ppp /dial .sh >> / var /log / fetchmail 2>&1");

if (p)

exit (p);

p = system ("/ etc /fetchmail / exchange_mail .sh ");

exit (p);

15 return 0; /* prevent gcc warning */

}

You can see that

this merely runs the existing shell scripts /etc/ppp/dial.sh and /etc/fetchmail/exchange mail.sh albeit

as root.

This is a standard trick that is often necessary to get around complex manipulations with groups. It does

however create a security hole. However, in the present circumstance, all dial in machines are 192.168.*.*

addresses, which are �rewalled in from the Internet, hence security subtleties are not a huge issue. As a second

154

CHAPTER 25. CASE EXAMPLE B 25.3. CUSTOM RXVT FOR PROGRESS

point, as a security hole, it is small. All the attacker can really do is execute dial-in's. On the other hand, never

create such a \setuid" program that can execute an arbitrary script. An example of such a program is:

int main (int argc , char ** argv)

{

setuid (geteuid ());

setgid (getegid ());

5 system (argv [1]);

}

which is a gaping security hole. In other words, if all setuid programs have a single immutable function, and

also take no options or input, then you are safe.

25.3 Custom rxvt for Progress

The Progress package runs perfectly on one machine inside a terminal emulator, but on other newer machines,

it fails with an ...cannot redirect output... error message, although it runs perfectly on the console on all

machines.

Of course it is typical of proprietary software to have such a limitation. What it is doing is not immediately

obvious.

It requires some brilliance to deduce that Progress had decided that it was not on a terminal based on the

return value of the ttyname() system call. It was not merely checking if the system call failed with a NULL

return value, but also checking if the �rst part of the terminal device matched the text /dev/tty. At some point

RedHat/rxvt switched to the /dev/pts/ system of pseudo terminal devices, hence the failure.

To solve the problem, I got the source for the rxvt terminal emulator. Within it, it uses several di�erent

methods of getting a pseudo terminal, depending on the system it was compiled for. It also supports the older

BSD style pseudo terminals, /dev/tty, that Progress required. By simply adjusting the config.h �le to

/* Define possible pty types */

/* # undef PTYS_ARE_NUMERIC */

/* # undef PTYS_ARE_PTMX */

/* # undef PTYS_ARE_PTC */

5 /* # undef PTYS_ARE__GETPTY */

/* # undef PTYS_ARE_GETPTY */

/* # define PTYS_ARE_GETPT 1 */

/* # undef PTYS_ARE_CLONE */

define PTYS_ARE_SEARCHED 1

and recompiling, Progress ran as normal.

This is obviously an obscure and not widely applicable technique, but serves to show the sort of things you

might have to resort to as a result of poor proprietary development.

25.4 Mail server

exim ran on the mail server as well. This machine hosts a per machine user list as /<hostname>/user. I chose

the userlist to have the format <login-name>:<plain-text-password>:<full-name> similar to a passwd �le.

It is from these user lists that the client dial-in machines create their own user logins. Simple use of cut and

sed and a new utility setpasswd will create the proper account on the local machine.

155

25.4. MAIL SERVER CHAPTER 25. CASE EXAMPLE B

156

Chapter 26

Corporate Frequently Asked Questions

This FAQ was compiled in August 1999. The rapid pace of IT1 means that it may well be out of date by the time

you read it. Please consult the various Internet resources listed for more up to date information.

This FAQ is not essential reading for Rute and you can skip questions you do not �nd interesting

26.1 Linux Overview

This section covers questions that pertain to Linux as a whole.

26.1.1 What is Linux?

Linux is the core of a free Unix operating system for the PC and other hardware platforms. Developement of

this operating system started in 1984; called the GNU project of the Free Software Foundation (FSF). The Linux

core (or kernel) is named after its author, Linus Torvalds. It began development in 1991 - the �rst usable releases

where made in 1993. Linux is often called GNU/Linux because much of the OS is comprised of the e�orts of the

GNU project.

Unix systems have been around since the 1960's and are a proven standard in industry. Linux is said to be

POSIX compliant, meaning that it con�rms to a certain de�nite computing standard laid down by academia and

industry. This means that Linux is largely compatible with other Unix systems (the same program can be easily

ported to run on another Unix system with few (sometimes no) modi�cations) and will network seamlessly with

other Unix systems.

Some commercial Unix systems are IRIX (for the Silicon Graphics); Solaris or SunOS for Sun Microsystem's

SPARC workstations; HP Unix for Hewlett Packard's servers; SCO for the PC; OSF for the DEC Alpha machine

and AIX for the PowerPC/RS6000.

Some freely available Unix systems are NetBSD, FreeBSD and OpenBSD and also enjoy widespread popularity.

Unix systems are multitasking and multiuser systems - meaning that multiple concurrent users running

multiple concurrent programs can connect to and use the same machine.

26.1.2 What are Unix systems used for? What can Linux do?

Unix systems are the backbone of the Internet. Heavy industry, mission critical applications, and universities

have always used Unix systems. High end servers and multiuser mainframes are traditionally Unix based. Today

Unix systems are used by large ISP's through to small businesses as a matter of course. A Unix system is the

standard choice when a hardware vendor comes out with a new computer platform because Unix is most amenable

to being ported. Unix systems are used as database, �le, and Internet servers. Unix is used for visualization and

graphics rendering (like some Hollywood productions). Industry and universities use Unix systems for scienti�c

simulations.

1Information Technology

157

26.1. LINUX OVERVIEW CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

The wide spread use of Unix is not well advertised because of a failure on the part of the media, and because

Unix systems are unjusti�ably thought to be more expensive and complicated, and therefore not suited for

mainstream audiences. This does not o�set the fact that most mission critical servers in existence are Unix

systems.

Linux can operate as a web, �le, smb (WinNT), Novell, printer, ftp, mail, sql, masquerading, �rewall, and

pop server to name but a few. It can do anything that any other network server can do faster and more reliably.

Linux's up and coming graphical user interfaces are of the most functional and aesthetically pleasing ever to

have graced the computer screen. Linux has now moved into the world of the desktop.

26.1.3 What other platforms does it run on including the PC?

Linux runs on

� 386/486/Pentium Processors.

� Digital Alpha's 64 bit processors.

� Motorola's 680x0 processors, included Commodore Amiga, Atari-ST/TT/Falcon and HP Apollo 68K

� Sun Sparc workstations, including sun4c and sun4m as well as well as Sun4d and Sun4u. Multiprocessors

machines are supported as well as full 64 bit support on the Ultrasparc.

� Advanced Risc Machine (ARM) processors.

� MIPS R3000/R4000 processors including Silicon Graphics machines.

� PowerPC machines.

� Merced suport is promised.

Other projects are in various stages of completion - eg, you may get Linux up and running on many other

hardware platforms, but it would take some time and expertise to install, and you may not have graphics

capabilities. Every month or so one sees support announced for some new esoteric hardware platform. Watch

the Linux Weekly News lwn.net <http://lwn.net/> to catch these.

26.1.4 What is meant by GNU/Linux as opposed to Linux?

(See also `What is GNU?' below and `What is Linux?' above)

In 1984 the Free Software Foundation (FSF) set out to create a free Unix-like system. It is only because of

their e�orts that the many critical packages that go into a Unix distribution are available. It is also because of

them that a freely available, comprehensive, legally de�native, free-software license is available. Because many

of the critical components of a typical Linux distribution are really just GNU tools developed long before Linux,

it is unfair to call any distribution a `Linux' system. The term GNU/Linux is more accurate and gives credit to

the larger part of Linux.

26.1.5 What web pages should I look at?

There are hundreds of web pages devoted to Linux. There are thousands of web pages devoted to di�erent free

software packages. A net search will reveal the enormous amount of info available.

� Three places for general Linux information are:

{ www.linux.org.uk <http://www.linux.org.uk/>

{ www.linux.org <http://www.linux.org/>

{ Linux International <http://www.li.org/>

� For kernel information see

158

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS 26.1. LINUX OVERVIEW

{ Linux Headquarters <http://www.linuxhq.com/>

� A very important site is

{ FSF Home Pages <http://www.gnu.org/>

which is the home page of the free software foundation and explains their purpose and the philosophy of

software that can be freely modi�ed and redistributed.

� Three large indexes of reviewed free and proprietary Linux software are:

{ Linuxberg <http://www.linuxberg.org/>

{ Linux Mall <http://www.LinuxMall.com/>

{ Scienti�c Applications for Linux (SAL) <http://SAL.KachinaTech.COM/index.shtml>

� Announcements for new software are mostly made at

{ www.freshmeat.net <http://www.freshmeat.net/>

� The Linux weekly news brings up to date info covering a wide range of Linux issues:

{ lwn.net <http://lwn.net/>

� The two major Linux desktop projects are:

{ Gnome Desktop <http://www.gnome.org/>

{ KDE Desktop <http://www.kde.org/>

But don't stop there - there are hundreds more.

26.1.6 What are Debian, RedHat, Caldera and Suse etc. Explain the di�erent
Linux distributions?

Linux is really just the `kernel' of the operating system. Linux in itself is just a 1 megabyte �le that runs the

rest of the system. Its function is to interface with hardware, multitask and run real programs which do tangible

things. All applications, network server programs, and utilities that go into a full Linux machine are really just

free software programs recompiled to run on Linux - most existed even before Linux. They are not part of Linux

and can (and do) actually work on any other of the Unix systems mentioned above.

Hence many e�orts have been taken to package all of the utilities needed for a Unix system into a single

collection, usually on a single easily installable CD.

Each of these e�orts combines hundreds of `packages' (eg the Apache web server is one package, the Netscape

web browser is another) into a Linux `distribution'.

Some of the known Linux distributions are:

� Apokalypse <http://www.gate.net/~mclinux/>

� Armed Linux <http://www.armed.net/>

� Bad Penguin Linux <http://web.tiscalinet.it/badpenguin/>

� Bastille Linux <http://www.bastille-linux.org/>

� Best Linux (Finnish/Swedish) <http://www.bestlinux.net/>

� Bifrost <http://www.data.slu.se/bifrost/dist.en.html>

� Black Cat Linux (Ukrainian/Russian) <http://www.blackcatlinux.com/>

� Caldera OpenLinux <http://www.calderasystems.com>

� CCLinux <http://www.CosmicChaos.com/CClinux/>

159

26.1. LINUX OVERVIEW CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

� Chinese Linux Extension <http://cle.linux.org.tw/CLE/e_index.shtml>

� Complete Linux <http://www.macmillansoftware.com/catalog/software_bud.cfm?isbn=1575953099>

� Conectiva Linux (Brazilian) <http://www.conectiva.com.br/cl/index.html>

� Debian GNU/Linux <http://www.debian.org>

� De�nite Linux <http://definite.ukpost.com/definite.html>

� DemoLinux <http://www.demolinux.org/>

� DLD <http://www.delix.de>

� DLite <http://opensrc.org/dlite/>

� DLX <http://www.wu-wien.ac.at/usr/h93/h9301726/dlx.html>

� DragonLinux <http://www.dragonlinux.nu/>

� easyLinux <http://www.easyLinux.com>

� Enoch <http://enoch.masslinux.com/>

� Eridani Star System <http://www.amush.cx/linux/>

� Eonova Linux <http://www.eonova.com/>

� e-smith server and gateway <http://www.e-smith.net>

� Eurielec Linux (Spanish) <http://www.etsit.upm.es/~eurielec/linux>

� eXecutive Linux <http://www.exelinux.com/>

� oppyfw <http://www.zelow.no/floppyfw/>

� Floppix <http://www.algonquinc.on.ca/~macewal/floppix/>

� Green Frog Linux <http://members.linuxstart.com/~austin/index.html>

� hal91 <http://home.sol.no/~okolaas/hal91.html>

� Hard Hat Linux <http://www.mvista.com/hardhat/>

� Independence <http://independence.seul.org/>

� Jurix <http://www.jurix.org>

� Kha0s Linux <http://www.kha0s.org/>

� KRUD <http://www.tummy.com/krud/>

� KSI-Linux <http://www.ksi-linux.com>

� Laetos <http://www.laetos.org>

� LEM <http://linux-embedded.com/>

� Linux Cyrillic Edition <http://www.usoft.spb.ru/Graphic/English/Products/products.html>

� LinuxGT <http://www.greysite.com>

� Linux-Kheops (French) <http://www.linux-kheops.com/kh97-33/index.htm>

� Linux MLD (Japanese) <http://www.mlb.co.jp>

� LinuxOne OS <http://www.linuxone.net/>

� LinuxPPC <http://www.linuxppc.com>

� LinuxPPP (Mexican) <http://www.os.com.mx/>

160

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS 26.1. LINUX OVERVIEW

� Linux Pro Plus <http://www.LinuxMall.com/Allprod/lxcdr.html>

� Linux Router Project <http://www.linuxrouter.org>

� LOAF <http://loaf.ecks.org/>

� LSD <http://wwwcache.ja.net/dev/lsd/>

� Mandrake <http://www.linux-mandrake.com/>

� Mastodon <http://www.pell.portland.or.us/~orc/Mastodon/>

� MicroLinux <http://linux.hr/microlinux/>

� MkLinux <http://www.mklinux.org>

� muLinux <http://mulinux.nevalabs.org/>

� nanoLinux II <http://www.pluto.linux.it/ildp/AppuntiLinux/AL-13.40.172.html>

� NoMad Linux <http://www.nomadlinux.com/>

� OpenClassroom <http://www.openclassroom.org/>

� Peanut Linux <http://metalab.unc.edu/peanut/>

� Plamo Linux <http://www.linet.gr.jp/~kojima/Plamo/>

� PLD <http://www.pld.org.pl>

� Project Ballantain <http://www.linuxsupportline.com/~router/>

� PROSA <http://www.prosa.it/prosa-debian/>

� QuadLinux <http://www.quadlinux.com/>

� Red Hat <http://www.redhat.com>

� Rock Linux <http://www.rock-projects.com/linux_e.html>

� RunOnCD <http://www.netian.com/~cgchoi>

� ShareTheNet <http://www.ShareTheNet.com>

� Skygate <http://www.skygate.co.uk/skylinux.html>

� Slackware <http://www.slackware.com>

� Small Linux <http://smalllinux.netpedia.net>

� Stampede <http://www.stampede.org>

� Stataboware <ftp://www.netstat.ne.jp/pub/Linux/Linux-Alpha-JP/>

� Storm Linux <http://www.stormix.com>

� SuSE <http://www.suse.com>

� Tomsrtbt <http://www.toms.net/rb/home.html>

� Trinux <http://www.trinux.org/>

� TurboLinux <http://www.turbolinux.com>

� uClinux <http://ryeham.ee.ryerson.ca/uClinux>

� Vine Linux <http://vine.flatout.org>

� WinLinux 2000 <http://www.winlinux.net/>

� Xdenu <http://xdenu.tcm.hut.fi/>

� XTeamLinux <http://www.xteamlinux.com.cn>

� Yellow Dog Linux <http://www.yellowdoglinux.com/>

There are over a hundred distributions of Linux. Many are just minor variations on an existing distributions.

161

26.2. LINUX, GNU AND LICENSINGCHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

26.1.7 Who developed Linux?

Linux's leading authors are the Free Software Foundation (FSF) of MIT, and Linus Torvalds.

The Linux kernel CREDITS list has over 200 names in it. These are all people who contributed source code

to the kernel. There are also between 200 and 600 packages (See previous question) that go into a typical Linux

installation. Most of these have more than one developer - usually a loosely knit team of computer enthusiasts

who have never met each other in person - and hence Linux really has thousands of `authors'.

A Free Software Who's Who <http://support.lcg.org/Whoswho/> has been created listing all the big

names.

It has been suggested that at over 10000 people are actively developing or testing Linux round the clock.

26.1.8 Why should I not use Linux?

If you are a private individual with no Unix expertise available to help you when you come into problems, AND

you are not interested in learning about the underlying workings of a Unix system, then don't install Linux.

If you depend on your desktop programs always looking and working the same way, and you are not interested

in the security of your data, or the performance of your machine, then don't install Linux.

If you are not interesting in leaving your computer on week after week and have the desktop remain as you

left it day in and day out, without failures or losses in performance, then don't install Linux.

26.2 Linux, GNU and Licensing

This section covers questions about the nature of free software and the concepts of GNU

26.2.1 What is Linux's license?

The Linux kernel is distributed under the GNU General Public License (GPL), available from the Free Software

Foundation:

� FSF Home Page <http://www.gnu.org/>

Most (95% ?) of all other software in a typical Linux distribution is also under the GPL or the LGPL (see

below).

There are many other types of free software licenses. Each of these is based on particular commercial or moral

outlooks. Their acronyms are as follows (as de�ned by the Linux Software Map database) in no particular order:

� PD - Placed in public domain

� shareware - Copyrighted, no restrictions, contributions solicited

� MIT - MIT X Consortium license (like BSD's but with no advertising requirement)

� BSD - Berkeley Regents copyright (used on BSD code)

� Artistic License - Same terms as Perl Artistic License

� FRS - Copyrighted, freely redistributable, may have some restrictions on redistribution of modi�ed sources

� GPL - GNU General Public License

� GPL 2.0 - GNU General Public License, version 2.0

� GPL+LGPL - GNU GPL and Library GPL

� restricted - Less free than any of the above

162

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS26.2. LINUX, GNU AND LICENSING

More info on these licenses can be had from

� ftp://metalab.unc.edu/pub/Linux/LICENSE

26.2.2 What is GNU?

GNU is an acronym for Gnu's Not Unix. A gnu is a large beast and is the motif of the Free Software Foundation

(FSF). GNU is a `recursive' acronym.

Richard Stallman is the founder of the FSF and the creator of the GNU General Public License. One of the

purposes of the FSF is to promote and develop free alternatives to proprietary software. The GNU project is an

e�ort to create a free Unix-like operating system from scratch and was started in 1984.

GNU represents this free software licensed under the GNU General Public License. GNU software is software

designed to meet a higher set of standards than its proprietary counterparts.

GNU has also become a movement in the computing world. When the word GNU is mentioned, it usually

evokes feelings of extreme left wing genius's who produce free software in their spare time that is far superior

to anything even large corporations can come up with through years of dedicated development. It also means

distributed and open development, consistency, compatibility and technical cutting edge information technology.

GNU means doing things once in the best way possible, providing solutions instead of quick �xes, and looking

exhaustively at possibilities instead of going for the most brightly coloured expedient approach.

26.2.3 Why is GNU software better than proprietary software?

Proprietary software is often looked down upon in the free software world for many reasons:

� It is closed to external scrutiny.

� Users are unable to add features to the software

� Users are unable to correct errors (bugs) in the software

The result of this is that proprietary software,

� does not con�rm to good standards for information technology.

� is incompatible with other proprietary software.

� is buggy.

� cannot be �xed.

� costs far more than it is worth.

� can do anything behind your back without you knowing.

� is insecure.

� tries to be better than other proprietary software without meeting real technical needs.

� wastes a lot of time duplicating the e�ort of other proprietary software.

� often does not build on existing software because of licensing issues or ignorance

GNU software on the other hand is open for anyone to scrutinize it. Users can (and do) freely �x and enhance

software for their own needs, then allow others the bene�t of their extensions. Many developers of di�erent

expertise collaborate to �nd the best way of doing things. Open industry and academic standards are adhered

to, to make software consistent and compatible. Collaborated e�ort between di�erent developers means that

code is shared and e�ort is not replicated. Users have close and direct contact with developers ensuring that

bugs are �xed quickly and users needs are met. Because source code can be viewed by anyone, developers write

code more carefully and are more inspired and more meticulous.

163

26.2. LINUX, GNU AND LICENSINGCHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

Another partial reason for this superiority is that GNU software is often written by people from academic

institutions who are in the centre of IT research, and are most quali�ed to dictate software solutions. In other

cases authors write software for their own use out of their own dissatisfaction for existing proprietry software -

a powerful motivation.

26.2.4 Explain the restrictions of Linux's `free' GNU General Public (GPL) soft-
ware license.

The following is quoted from the GPL itself:

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free software

(and charge for this service if you wish), that you receive source code or can get it if you want it, that

you can change the software or use pieces of it in new free programs; and that you know you can do

these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights

or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if

you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give

the recipients all the rights that you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their rights.

26.2.5 If Linux is free, where do companies have the right to make money o� selling
CD's?

See `Where do I get Linux?' below.

26.2.6 What if Linus Torvalds decided to change the copyright on the kernel?
Could he sell out to a company?

This is not possible. Because of the legal terms of the GPL, for Linux to be distributed under a di�erent copyright

would require the consent of all 200+ persons that have ever contributed to the Linux source code. These people

come from such a variety of places, that such a task is logistically infeasible. Even if it did happen, new developers

would probably rally in de�ance and continue work on the kernel as it is. This free kernel would amass more

followers and would quickly become the standard, with or without Linus.

26.2.7 What if Linus Torvalds stopped supporting Linux? What if kernel develop-
ment split?

There are many kernel developers who have suÆcient knowledge to do the job of Linus. Most probably a team

of core developers would take over the task if Linus no longer worked on the kernel. Linux might even split into

di�erent development teams if a disagreement did break out about some programming issue. It may rejoin later

on. This is a process that many GNU software packages are continually going through to no ill e�ect. It doesn't

really matter much from the end user's perspective since GNU software by its nature always tends to gravitate

towards consistancy and improvement, one way are the other. It is also doesn't matter to the end user because

the end user has selected a popular Linux distribution packaged by someone who has already dealt with these

issues.

26.2.8 What is Open Source vs Free vs Shareware?

Open Source is a new catch phrase that is ambiguous in meaning but is often used synonymously with Free. It

sometimes refers to any proprietary vendor releasing source code to their package, even though that source code

164

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS 26.3. LINUX DISTRIBUTIONS

is not `free' in the sense of users being able to modify it and redistribute it. Sometimes it means `public domain'

software which anyone can modify, but which can be incorporated into commercial packages where later versions

will be unavailable in source form.

Hence we don't like to use the term `Open Source'. `Free' software, in the sense of `freedom' to modify and

redistribute, is the preferred term and necessitates a copyright license along the same vein as the GPL.

Shareware refers to completely non-free software that is encouraged to be redistributed at no charge, but

which requests a small fee if it happens to land on your computer. It is not free software at all.

26.3 Linux Distributions

This section covers questions that about how Linux software is packaged and distributed, and how to obtain

Linux.

26.3.1 If everyone is constantly modifying the source, isn't this bad for the con-
sumer? How is the user protected from bogus software?

You as the user are not going to download arbitrary untested software any more than you would if you were

using Win95.

When you get Linux, it will be inside a standard distribution, probably on a CD. Each of these packages is

selected by the distribution vendors to be a genuine and stable release of that package. This is the responsibility

taken on by those who create Linux distributions.

Note that there is no `corporate body' that overseas Linux. Everyone is on there own mission. BUT, a

package will not �nd its way into a distribution unless someone feels that it is a useful one. For people to feel

it is useful means that they have to have used it over a period of time, and in this way only good, thoroughly

reviewed software gets included.

Maintainers of packages ensure that oÆcial releases are downloadable from their home pages, and will upload

original versions onto well established ftp servers.

It is not the case that any person is free to modify original distributions of packages and thereby hurt the

names of the maintainers of that package.

For those who are paranoid that the software that they have downloaded is not the genuine article distributed

by the maintainer of that software, digital signatures can verify the packager of that software. Cases where

vandals have managed to substitute a bogus package for a real one are extremely rare, and entirely preventable.

26.3.2 There are so many di�erent Linux versions - is this not confusion and in-
compatibility?

(See also next question.)

The Linux kernel is now on 2.2.11 as of this writing. There are no other versions of the Linux kernel that are

considered stable and suited for broad public use. The previous releases of the kernel were the 2.0.3x versions -

this had been the standard for more than a year.

The Linux kernel version does not e�ect the Linux user. Linux programs will work regardless of the kernel

version. Kernel versions speak of features, not compatibility.

Each Linux distribution has its own versioning system. RedHat has just released version 6.0 of its distribution,

Caldera, 2.2, Debian, 2.1, and so forth. Each new incarnation of a distribution will have newer versions of packages

contained therein, and better installation software. There may also have been subtle changes in the �lesystem

layout.

The Linux Unix C library implementation is called glibc. When RedHat brought out version 5.0 of its

distribution, it changed to glibc from the older `libc5' library. Because all packages require this library, this was

said to introduce incompatibility. It is true however that multiple versions of libraries can coexist on the same

system and hence no serious compatibility problem was ever introduced in this transition. Other vendors have

since followed suite in making the transition to glibc (also known as libc6).

165

26.3. LINUX DISTRIBUTIONS CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

The Linux community has also produced a document called the Linux Filesystem Standard. Most vendors

try to be compliant with this standard, and hence Linux systems will look very similar from one distribution to

another.

There is hence no real confusion or compatibility problems between Linux's.

26.3.3 Will a program from one Linux Distribution run on another? How compat-
ible are the di�erent distributions?

The di�erent distributions are NOT like di�erent operating systems (compare Sun vs IRIX). They are very

similar and share binary compatibility (provided that they are for the same type of processor of course) - i.e.

Linux binaries compiled on one system will work on another. Utilities also exist to convert packages meant for

one distribution to be installed on a di�erent distribution. Some distributions are however created for speci�c

hardware and hence their packages will only run on that hardware. However all software speci�cally written for

Linux will recompile without any modi�cations on another Linux platform in addition to compiling with `few'

modi�cations on other Unix systems.

The rule is basically this: if you have three packages that you would need to get working on a di�erent

distribution, then it is trivial to make the adjustments to do this. If you have a hundred packages that you need

to get working, then it becomes a problem.

26.3.4 What is the best distribution to use?

If you are an absolute beginner and don't really feel like thinking about what distribution to get, the most popular

and easiest to install is RedHat. RedHat is also supported quite well in industry.

The attributes of some distributions are:

Mandrake: Mandrake is RedHat with some packages added/updated. It has recently become very popular,

and may be worth using in preference to RedHat.

Debian: This is probably the most technically advanced. It is completely free and very well structured as

well as standards conformant. It is slightly more diÆcult to install.

RedHat: The most popular. What's nice about RedHat is that almost all developers provide RedHat rpm's

(the �le that a RedHat package comes in). Debian deb �les are usually provided, but not as often as rpm. As

explained, RedHat is the easiest to install (although the new Caldera is also getting pretty cool installation wise).

Caldera: this is a commercial distribution that has an oÆce suite built into it. Caldera is now getting as easy

to install as RedHat. If you have an oÆce that wants to put Linux on every machine, Caldera may be the way to

go. You will have to order these CD's straight from Caldera though, since we are not aware of suppliers in SA.

Slackware: This was the �rst Linux distribution and is supposed to be the most current (software is always

the latest). Its a pain to install and manage, although school kids who don't know any better love it.

SuSE: SuSE in Germany ships a very nice Linux distribution with good documentation written from scratch.

Corel: Corel corporation says that they will come out with their own Linux distribution at the end of this

year. This will probably have a lot of Corel's own applications bundled in. It won't have Corel Draw though.

26.3.5 Where do I get Linux?

Once you have decided on a distribution (see previous question), you need to download that distribution or

buy/borrow it on CD. Commercial distributions may contain proprietary software that you may not be allowed

to install multiple times. However, Mandrake, RedHat, Debian and Slackware are all committed to freedom and

hence will not have any software that is non-redistributable. Hence if you get one of these on CD, feel free to

install it as many times as you like.

Note that GPL does not say that GNU software is without cost. You are allowed to charge for the service

of distributing, installing and maintaining software. It is the freedom to redistribute and modify GNU software

that is meant by the word free.

The international mirror for Linux distributions is

166

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS 26.4. LINUX SUPPORT

� ftp://metalab.unc.edu/pub/Linux/distributions/

You would be have a lot of free time to download from this link though, so rather use our local mirrors

on ftp.is.co.za and ftp.snd.co.za. Some universities also have mirrors: ftp.wits.co.za (Wits) and ftp.sun.ac.za

(Stellenbosch).

(Its a good idea to browse around all these servers to get a feel of what software is available. Also check

the date of the �le, since some software can really sit around for years and there may be a more recent version

available elsewhere on the internet.)

Downloading from these ftp sites is going to take a long time unless you have a really fast link. Hence rather

ask around who locally sells Linux on CD. Do NOT adopt the attitude that since Linux is free, one should not

have to pay for a CD. CD's are very cheap (R100 or so) - money that will pay for itself many times over in the

time you save.

Also always make sure you have the LATEST VERSION of whatever it is you're buying or downloading.

Under no circumstance install from a distribution that has been superseded by a newer version.

26.3.6 How do I install Linux?

It helps to think more laterally when asking trying to get information about Linux:

Would-be Linux users everywhere need to know how to install Linux. Surely the free software

community has long since generated documentation to help them? Where is that documentation?

Actually, RedHat has an extremely comprehensive installation guide in html format. Browse around your

RedHat CD to �nd it.

There is also a lot of installation guides available on the net - see what happens when you do a net search

with `linux installation guide'. Each distribution will also have an installation guide as part of it. You need to

read through that guide in detail. It will explain everything you need to know about setting up partitions, dual

boots, etc.

The installation procedure WILL be completely di�erent for each distribution.

26.4 Linux Support

This section explains where to get free and commercial help with Linux.

26.4.1 Where does a person get Linux support? My bought software is supported
- how does Linux compete?

Linux is supported by the community that uses Linux. With commercial systems, users are too stingy to share

their knowledge because they feel that they owe nothing for having spent it on software.

Linux users on the other hand are very supportive of other Linux users. A person can get FAR BETTER

SUPPORT from the internet community that they would from their commercial software vendors. Most packages

have email lists where the very developers are be available for questions. Most cities have mailing lists (Gauteng

and the Western Cape have ones) where responses to email questions are answered within hours. The very

idea that Linux is not supported is laughed at by all those that have started using Linux. The new Linux user

discovers that help abounds and that there is never want for a friendly discussion about any computing problem

they may have.

Newsgroups provide assistance where Linux issues are discussed and help is given to new users - there are

many such newsgroups. Using a newsgroup has the bene�t of the widest possible audience.

The web is also an excellent place for support. Because users constantly interact and discuss Linux issues,

99% of the problems a user is likely to have would have already been documented or covered in mailing list

archives, often obviating the need to ask anyone at all.

167

26.5. LINUX COMPARED TO OTHER SYSTEMSCHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

Finally, many professional companies will provide assistance at hourly rates comparable (usually cheaper)

than for commercial software.

26.4.2 Should I buy a reference book for Linux? Where do I get one?

It is recommended that you buy both a comprehensive Unix system administrators reference as well as a Linux

book. The Linux book will give the tips, tricks and Linux speci�cs, while the Unix reference will teach you the

fundamental theory and basic practical commands of Unix.

(This is not strictly necessary - there are many online manuals tutorials, FAQ's and HOWTO's. However

printed text will be a great help to those new to Unix.)

Popular book stores in South Africa are starting to stock more Unix and Linux material.

amazon.com is probably the best place to order for a wide selecting.

26.4.3 What companies support Linux in South Africa?

LPA Home Page <http://www.lpa.org.za/> contains a list of all companies that have joined the Linux Pro-

fessionals Association (LPA).

26.4.4 What mailing lists can I subscribe to in South Africa?

Send a one line message

subscribe clug

to the email address:

majordomo@leg.uct.ac.za

This will subscribe you to the CLUG mailing list

clug@leg.uct.ac.za

You will get a reply mail giving further instructions.

You can do the same for the Gauteng Linux Users Group (GLUG): majordomo@linux.org.za for

glug@linux.org.za

26.5 Linux Compared to Other Systems

This section discusses the relative merits of di�erent Unix's and NT.

26.5.1 What is the most popular Unix in the world?

It has long since been agreed that Linux has by far the highest install base of any Unix.

26.5.2 How many Linux systems are there out there?

This is a question nobody really knows. Various estimates have been put forward based on statistical considera-

tions. 10-20 million is the current �gure.

What is clear is that the number of Linux users is doubling consistently every year. This is evident from

user interest and industry involvement in Linux - journal subscriptions, web hits, media attention, support

requirements, software ports etc.

168

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS26.5. LINUX COMPARED TO OTHER SYSTEMS

26.5.3 What is the TOTAL cost of installing and running NT compared to a Linux
system?

Although Linux is free (or at most R100 for a CD), a good knowledge of Unix is required to install and con�gure

a reliable server. This tends to cost you less than the same number of hours of quali�ed NT support, but it

WILL still cost you.

On the other hand, your NT workstation has to be licensed.

Many arguments have been put forward regarding server costs that fail to take into account the completely

lifetime of the server. This has resulted in contrasting reports that either claim that Linux costs nothing, or

claim that it is impossible to use because of the expense of the expertise required. Neither of these extreme views

are true.

The total cost of a server includes the following:

� Cost of the Operating System

� Cost of dedicated software not inherently supported by the operating system

� Cost of hardware

� Cost of installation

� Cost of support

� Implicit costs of server down-time

� Cost of maintenance

� Cost of repair

� Cost of essential upgrades

� Linux can run many services (mail, �le, web) o� the same server rather than having dedicated servers -

this can be a tremendous saving.

When all these factors are considered, any company will probably make a truly enormous saving by choosing

a Linux server over an NT server.

26.5.4 What is the TOTAL cost of installing and running a Linux system compared
to a proprietary Unix system?

(See previous question.)

Proprietary Unix systems are not as user friendly as Linux. At the present time, Linux is also considered easier

to maintain than any commercial Unix system (the degree depends on the system) because of its widespread use

and hence easy access to Linux expertise. Linux has a far more dedicated and `beginner-friendly' documentation

project than any commercial Unix.

The upshot of this is that though your proprietary Unix system will perform as reliably as Linux, its is going

to be more time consuming to maintain.

Unix's that run on specialized hardware are almost never worth what you paid for them in terms of a

cost/performance ratio. That goes doubly so if you are also paying for an operating system.

26.5.5 How does Linux compare to other operating systems in performance?

Linux will typically perform 50% to 100% better than other operating systems on the same hardware. There are

no commercial exceptions to this rule on the PC.

There have been a great many misguided attempts to show that Linux performs better or worse than other

platforms. We have never read a completely conclusive study. Usually these studies are done with one or other

169

26.5. LINUX COMPARED TO OTHER SYSTEMSCHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

competing system having better expertise at its disposal, and are hence grossly biased. In some supposedly inde-

pendent tests, Linux tended to outperform NT as a web server, �le server and database server by an appreciable

margin.

The recent `Mindcraft' tests drew much controversy by showing NT to outperform Linux by a considerable

margin. The scenario that was tested (including the repeat test in June 1999) is however unlikely to ever occur

in practice. Even so, work has recently corrected the minor problems that caused this performance degradation.

If you are one of the dozen odd companies in the world that uses a web/�le server in this way, you may �nd that

the latest kernel to be an improvement.

In general the performance improvement of a Linux box is quite visible to the user/administrator. It is

especially noticeable how fast the �le system access is, and how it scales smoothly when multiple services are

being used simultaneously. NT may perform well when loaded by one service only, but that is not how one wants

to use a server.

There is also criticism of Linux's SMP (multiprocessor) support, and lack of a journalling �le system. These

two issues are discussed in the next question.

In our experience (from both discussions and development), Linux's critical operations are always pedantically

optimised - far more than would normally be encouraged in a commercial organisation. Hence if your hardware

is not performing the absolute best it can, it's by a very small margin.

Its also probably not worth while debating these kinds of speed issues where there are so many other good

reasons to prefer Linux.

26.5.6 What about SMP and a journalling �le-system? Is Linux enterprise ready?

It really doesn't matter whether there are criterion to say if Linux is or isn't READY for the enterprise. The fact

is that Linux is being USED in a great many close-to-mission-critical situations and in situations that require

high performance, and that those administrators using it are happy with its performance. Moreover there are

many situations where vendors recommend Linux over any other system for hosting their applications. The

author has personally con�gured critical machines to the satisfaction of the client.

Linux is supposed to lack proper SMP support and therefore not be as scalable as other OS's. This is

somewhat true and will prbably remain the case until December 1999 when kernel 2.4 is being released. On the

other hand, one should ask how many companies are actually buying these SMP motherboards with 4, 8 and 16

processors. For 95% of the situations where the author's company had to install a server, an entry level PC was

more than suÆcient.

Linux also lacks a journalling �le system. This ultimately means that in the event of a power failure, there

is small chance that the �le-system would not recover from the error, and would require manual intervention.

There is a very small chance that the �le-system would be damaged to the point that a package may need to

be reinstalled. Neither of these two scenarios are as likely as an NT server requiring a complete re-installation,

which has NEVER happened on a Linux machine.

Linux will soon have a facility of some sort that will close the whole journalling �le system issue. Recent news

talks of some already working code.

26.5.7 Does Linux only support 2 Gig of memory and 128 Meg of swap?

Until recently there was a 2 Gig limit, but this is no longer the case. Linux supports a full 64 Gig (sixty four

gigabytes) of memory, provided that a kernel patch is applied. The author of this patch tested 8 processes running

simultaneously on an 8-CPU Xeon machine having 8 Gigs of RAM. Each process used a full 1 Gig of unshared

memory.

If you really need this much memory, you should be using a 64 bit system, like a DEC Alpha, or Sun UltraSparc

machine.

On 64 bit systems, Linux supports more memory than most �rst world governments can a�ord to buy.

Linux supports as much swap space as you like. For technical reasons, however, your swap space must be

divided into separate partitions of 128 Meg each.

170

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS26.5. LINUX COMPARED TO OTHER SYSTEMS

26.5.8 Is UNIX not antiquated? Is its security model not outdated?

The principles underlying OS development have not changed since the concept of an OS was invented some

30+ years ago. It is really academia that develop the theoretical models for computer science { industry only

implements these.

Microsoft has recently claimed that UNIX is antiquated. This would be a fair criticism if Microsoft had taken

into account any of the available technology when developing their own systems. It is quite obvious that NT

was developed to be somewhat compatible with Win95, and hence owes many of its limitations to the original

MSDOS.

UNIX has a one-administrator, many-users security model. NT is supposed to have improved upon this: if

you know of any worthwhile examples of e�ective use of multiple administrators under NT, please let us know.

It is interesting to question what bene�t multiple-administrator-ness has to a system like NT that cannot be

maintained remotely. If the administrator has to sit in front of the box to administrate it, they can just as well

unplug the box and reformat its hard-disk.

For what its worth, it is in fact possible under UNIX to selectively decide what users can access what system

con�guration �les, without giving them full administrator privileges. You can then lock the machine in a safe

with just a network cable sticking out (or even a serial or parallel port cable) and administer the whole thing

through that.

As regards security: a general principle for any mechanical or electronic system is that something cannot be

said to be secure before it is at least functionally reliable.

26.5.9 What is C2 certi�cation? Windows NT has it, why doesn't Linux have it?

C2 basically means that a user can specify which other users can access his/her �les. It also says that a log of

who accessed what must be kept.

It has nothing to do with how diÆcult it is to compromise a system or to underhandedly gain administration

privileges.

Here is the EXECUTIVE SUMMARY of the National Computer Security Centre (NCSC) Final Evaluation.

(Incidently, this executive summary was compiled using LaTeX - a typesetting language for UNIX.)

The security protection provided by Microsoft Windows NT Workstation and Server Version 3.5

with Service Pack 3 when con�gured according to the Windows NT Trusted Facility Manual, has

been evaluated by the National Security Agency (NSA) The security features of Microsoft Windows

NT Workstation and Server were examined against the requirements speci�ed by the Department of

Defense Trusted Computer System Evaluation Criteria (TCSEC) dated December 1985 to establish

a rating. The evaluation team has determined that the highest class for which Microsoft Windows

NT Workstation and Server Version 3.5 with Service Pack 3 satis�es all the speci�ed requirements of

the TCSEC is C2. In addition, the B2 Trusted Path and B2 Trusted Facility Management functional

requirements are also satis�ed. A system that has been rated C2 provides a Trusted Computer Base

(TCB) that enforces a Discretionary Access Control (DAC) policy to protect information and allow

users to share information under their control with other speci�ed users, identi�cation and authen-

tication of users to control access to the system and enforce accountability, the prevention of access

to residual information from a previous user's actions, and the auditing of security related events.

A system that satis�es the B2 Trusted Path requirement supports a trusted communication path

between the TCB and the user for identi�cation and authentication. A system that satis�es the B2

Trusted Facility Management requirement supports the ability to separate operator and administra-

tor functions. Microsoft Windows NT Workstation and Server Version 3.5 with Service Pack 3 is a

preemptive multitasking multiprocessor operating system which runs on both CISC (Intel Pentium)

and RISC (DEC Alpha) hardware architectures. The platforms in the evaluated con�guration are:

the Compaq Proliant 2000 and 4000 and the DECpc AXP/150.

On page 3 of the report it is clearly stated that the "(POSIX) component is eliminated (i.e. not considered

for review) because its UNIX-based security features have not been integrated well with the security features of

the Windows NT operating system." and also that "The networking components of Windows NT are eliminated

in this con�guration."

171

26.5. LINUX COMPARED TO OTHER SYSTEMSCHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

In other words, the C2 security of NT would mean practically nothing to any corporation anywhere.

The NCSC is entirely a subsidiary of the National Security Agency (NSA) of the US government. Since the US

government prohibits export of encryption technology, and since a secure facility requires encryption technology

to have any hope of being useful in practice, the TCSEC is of no use to anyone outside of the US. The TCSEC's

aim (to provide industry with a benchmark) implicitly refers to products distributed in the US only. I.e. not

Microsoft.

Linux will never be C2 certi�ed because the certi�cation requirement dictates that (page 2) "the release being

evaluated must not undergo any additional development" (an obvious requirement for a package). Which in the

case of Linux is impossible. It may however be possible to certify a particular binary version of Linux, but then

that version would become useless if any security exploits were ever discovered. In the �rst place, Linux does not

have C2 features (AFAIK).

It is questionable whether the TCSEC will ever have any relevance to mainstream IT infrastructures. The

Internet Engineering Task Force (IETF) is really the organisation that dictates security protocols, which is closer

to what we are really talking about when we say "security".

26.5.10 What are claimed to be the principle di�erences between Unix and NT
that make Unix advocates against NT?

Many claims are frequently made against NT by Unix advocates. These sometimes spring from rumors that

circulate about the internals of the NT system as well as about politics surrounding its development. Unix advo-

cates will frequently jeer at what they think are poorly implemented protocols, expedient subsystems, bad design

decisions or insecure services. In particular, many stories circulate about how NT failed at a particular function

where a Unix box performed admirably. They speak of experiences where NT crashed unpredictable or under

particular loading conditions, and theorize about how smaller cheaper systems running Linux/FreeBSD/etc could

outperform NT. Some of the arguments comparing Unix to NT require a considerable technical understanding

to appreciate, so will not be explained here. The following broad outline gives some idea of the Unix advocate's

position.

Unix conforms to many tried and tested standards such as POSIX, BSD and SYSV. These standards dictate

the Application Programmers Interfaces (API), �le system layout, communication protocols and data formats

underlying an OS. In the case of NT these were created mostly from scratch thus inventing its own standard. No

external review process existed to ensure that the created standards were enduring and technically sound. Unix,

on the other hand, was designed to be a standard to which many di�erent implementations could conform and

has evolved over a long period of time.

NT is not a true multi-user system. It is sometimes thought that NT is multi-user because of its ability to

host, for example, multiple simultaneous ftp logins. Such does not constitute true multi-user-ability. A Unix

system allows multiple users to log onto the same server and all start running spread sheets, word processors

and web browsers, completely unaware of each other's presence on the system, and each with their own secure

environment that other users cannot access.

Some may argue what the point of such a exible system is, since in most cases, each user has their own

stand-alone PC, and an internet server has no-one logged onto it at all. The point is many fold: Multi-user-

ability isolates separate subsystems so that they cannot interfere with each other. It provides a stable and generic

framework within which services can operate. It secures individual services from compromising a system's stability

and security.

The administrator and developer capitalize on this framework, to more easily and soundly develop, customize,

and support software. New Unix users very soon can't live without this exibility.

Another major di�erence between Unix and NT is the apparent target market of administrators who are

likely to use these systems. NT does not require the administrator to understand software programs. Unix on

the other hand is widely driven by scripting languages for its con�guration and maintenance: the administrator

is also a developer, and need not rely on the existence of a pre-written package to solve a problem - the feature

can be created, and there are always many ways to do it.

Hence, on Unix, the administrator's creativity and ingenuity allow them to quickly and easily customize the

system. Unix programs are in general designed to inter-operate with each other allowing the automation of any

program within a scripting language. Nationwide database networks have been easily created through simple

scripts, without the need for expensive development or purchasing of software. A simple example is often sited by

172

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS26.5. LINUX COMPARED TO OTHER SYSTEMS

Linux advocates: `Try add a new user on NT. Now try add a thousand new users'. Its very easy to do something

with mouse clicks. Its far more important to be able to automate a process.

Unix systems are designed to be network transparent at their lowest levels. This means that whatever a

program does, it should be able to do across a network. Whenever you use a Unix machine you are using it

through a logical or physical network layer, thus facilitating any kind of remote access to a server. This means for

example that you can do remote administration. You do not have to have a program installed on your machine

to run it, or have a �le on your machine to access it. Anything that you can do with your computer you can

do on another computer across a network with complete transparency to the fact. Some feel that NT does not

exploit the full potential of networking.

In terms of down-time, stability and performance, Unix systems are conjectored to be far better than NT. A

Unix system will stand for years without a reboot - any con�guration changes made will necessitate that only

the a�ected subsystem be restarted and not the entire machine. Unix systems on PC's are reported to be more

scalable and faster than NT.

As a developer, Unix code writers have countless GNU packages available to them as examples, whereas

traditional industry does not disclose its source code. The Unix developer can hence freely borrow and review

code of other packages thus making development much more economical. Unix development tools have evolved

over a much longer period of time than NT, and are written and supported by the very community that uses

them.

26.5.11 What do Linux users say when they compare SCOs Unix to Linux? Should
I upgrade to Linux from SCOs Unix?

Some Linux users that use SCOs Unix have claimed that it is inexible and diÆcult to maintain. It does run the

X Window System, but generally the utilities that come with a basic machine have far less options and features

compared to the GNU utilities which Linux users are used to.

It is, on the other hand, an extremely reliable server that has security features not present in Linux. Un-

fortunately, some Linux users consider these and many of the other distinguishing features of SCOs Unix to be

inapplicable to them.

Because Linux awlessly runs native binaries for this system, it might be a good idea to upgrade your machine

to Linux. You can still keep any third party software without having to get Linux versions of them, and then

have the bene�t of many features that SCOs Unix would require licenses for.

26.5.12 What do Linux users say when they compare Solaris/SunOS to Linux?
Should I switch to Linux?

Suns systems are of the best around. Like other Unix's, Solaris is stable as a rock. On older SUN workstations

Linux has been shown to substantially improve performance over the original OS, so Linux has been installed to

breath new life back into this hardware.

On the latest high end SUN servers, we are not sure if its worth reinstalling a di�erent operating system.

However its an excellent idea to install a full set of GNU utilities to make administration and development easier.

If you do install, say, RedHat on a SUN, you would have the bene�t of RedHat package management and a

nice array of useful programs that would take a long time to install under the native OS. The real advantage

would be if you had other Linux systems on the network - your SUN box would then look exactly the same and

hence be easy to administer.

Solaris for the PC is available, but is said to be slower than Linux.

26.5.13 How does FreeBSD compare to Linux?

FreeBSD is very similar to Linux in that it also relies on a large number of GNU packages. Most of the packages

available for Linux are also available for FreeBSD.

The arguments comparing FreeBSD to Linux center around the di�erences between how various kernel func-

tions are implemented. Depending on the area you look at, either Linux or FreeBSD will have a better imple-

173

26.6. TECHNICAL CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

mentation. On the whole, FreeBSD is thought to have a better architecture, although Linux has had the bene�t

of being ported to many platforms and has a great many more features and supports far more hardware. It

is questionable whether the performance penalties we are talking about are of real concern in most practical

situations.

GPL advocates take issue with FreeBSD because its licensing allows a commercial organisation to use FreeBSD

without disclosing the source code.

None of this o�sets the fact that either of these systems are preferable to proprietary ones.

26.5.14 Should I switch to Linux from IRIX?

IRIX is also (see previous questions) a good system. You should not try replacing IRIX with Linux unless you

are a really keen experimenter. Linux support for the SGI is not as good as for the SUN.

Do however download all the GNU utilities you can get your hands on. SGI's are even better machines once

given the GNU touch.

Its worth mentioning that Silicon Graphics has actually pledged tremendous support to Linux. Silicon Graph-

ics Intel based workstation are being shipped that run only Linux. Silicon Graphics is said to be in the process

of scrapping its NT support. Because Silicon Graphics seems to be porting important kernel features from IRIX

to Linux, one can hypothesise that they are considering converting everything over to Linux in the future.

26.6 Technical

This section covers various speci�c and technical questions.

26.6.1 Are Linux CD's readable from Win95/98/00 ?

Yes. This will allow you to browse the installation documentation on the CD.

26.6.2 Can I run Linux and Win95 on the same machine?

Yes, Linux will occupy two or more partitions, while Win95 will sit in one of the primary partitions. At boot

time, a boot prompt will ask you to select which operating system you would like to boot into.

26.6.3 How much space do I need to install Linux?

A useful distribution of packages that includes the X Window System (Unix's graphical environment) will occupy

less than 1 gigabyte. A network server that does not have to run X can get away with about 300 megabytes.

Linux can run on as little as a single sti�y disk - thats 1.4 megabytes - and still perform various network services.

26.6.4 What are the hardware requirements?

Linux runs on many di�erent hardware platforms, as explained above. The typically user should purchase an

entry level PC with at least 16 megabytes of RAM if they are going to run the X Window System smoothly

(Unix's graphical environment).

A good Linux machine is a PII 300 (or AMD, K6, Cyrix etc.) with 64 megabytes of RAM and a 2 megabyte

graphics card (i.e. capable of run 1024x768 screen resolution in 15/16 bit color). 1 gigabyte of free disk space is

necessary.

If you are using scrap hardware, an adequite machine for the X Window System should not have less than a

486-100MHz processor and 8 megabytes of RAM. Network servers can run on a 386 with 4 megabytes of RAM,

and a 200 megabyte hard drive.

174

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS 26.6. TECHNICAL

Note that recently some distributions are coming out with Pentium only compilations. This means that your

old 386 will no longer work. You will then have to compile your own kernel for the processor you are using, and

possibly recompile packages.

26.6.5 What hardware is supported? Will my sound/graphics/network card work?

About 90% of all hardware available for the PC is supported under Linux. In general, well established brand

names will always work, these will tend to cost more though. New graphics/network cards are always being

released onto the market, If you buy one of these, you may have to wait many months before support becomes

available (if ever).

To check on hardware support check the Linux hardware howto:

� Hardware-HOWTO <http://users.bart.nl/~patrickr/hardware-howto/Hardware-HOWTO.html>

This may not be up to date, so its best to go to the various references listed in this document and get the

latest info.

26.6.6 Can I view my Win95/98/00/NT, DOS, etc. �les under Linux?

Linux has read and write support for all these �le systems. Hence your other partitions will be readable from

Linux. In addition, Linux has support for a wide range of other �le systems like those of OS2, Amiga and other

Unix systems.

26.6.7 Can I run DOS programs under Linux?

Linux contains a highly advanced DOS emulator. It will run almost any 16 or 32 bit DOS application. It runs a

great number of 32 bit DOS games as well.

The DOS emulator package for Linux is called dosemu. It will typically run applications much faster than

normal DOS because of Linux's faster �le system access and system calls.

It can run in an X window just like a dos window under Win95.

26.6.8 Can I recompile Win95/98/00 programs under Linux?

Yes. WineLib is a part of the Wine package (see below) and allows Windows applications to be recompiled to

work under Linux. Apparently this works extremely well with virtually no changes to the source code being

necessary.

26.6.9 Can I run Win95/98/00 programs under Linux?

Yes and no.

There are commercial emulators that will run a virtual 386 machine under Linux. This enables mostly awless

running of Win95/98/00 under Linux if you really have to and at a large performance penalty. You still have

to buy Win95 though and your Win95 applications will not be able to directly communicate with your Linux

applications.

There is also a project called Wine (WINdows Emulator) which aims to provide a free alternative to Win95

by allowing Linux to run Win95 16 or 32 bit binaries with little to no performance penalty. It has been in

development for many years now, and has reached the point where many simple programs work quite awlessly

under Linux.

Get a grip on what this means: you can run Minesweep under Linux and it will come up on your X Window

screen next to your other Linux applications and look EXACTLY like what it does under Win95 - all this without

having to buy Win95. You will be able to cut and paste between Win95 apps and Linux apps.

175

26.6. TECHNICAL CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

However, many applications (especially large and complex ones) do not display correctly under Linux, and/or

crash during operation.

Many Win95 games do however work quite well under Linux.

We personally do not �nd a need to use any Win95 software on Linux, having become so accustomed to native

Unix software. If there is an application that you really HAVE to get working under Linux, perhaps you can try

Wine on it - it may work adequately for your needs.

See the Wine Headquarters <http://www.winehq.com/faq.html> for more info.

26.6.10 I have heard that Linux does not su�er from virus attacks. Is it true that
there is no threat of viruses with Unix systems?

Yes. There is categorically NO such thing as a virus under Linux. It has been rumored that viruses (worms)

have existed in the past for Unix and have propagated themselves through networks. We have never seen such a

thing and it is doubtful that anything like this managed to compromise data.

The reason a virus cannot exist on a mult-user system is because any program that runs on such a system,

does so inside a protected `privilege' space. It can only have access to the �les and hardware that has been

previously been allowed by an authentication process. It is hence a technical impossibility for the kinds of viruses

that exist for other systems to propagate on multi-user systems like Unix.

The problem that a virus has is analogous to a real virus attacking a tobacco mono-culture. It propagates

much more quickly and easily when all the hosts are the same. Unix systems are mostly not compatible AT

THE LOW LEVEL WHERE A VIRUS WOULD NEED TO WORK, even di�erent versions of the same system.

Hence writing a virus that would work properly on a large variety of systems is next to impossible. Note that

this has nothing to do with the `compatability' from a users perspective.

However, although Linux cannot itself execute a virus, it may be able to pass on a virus meant for a Windows

machine should a Linux box act as a mail or �le server. To avoid this problem, numerous virus detection software

for Linux is now becoming available.

26.6.11 Is Linux Y2K compliant?

Yes. The Linux kernel itself has no limitations as far as the turn of the millennia is concerned, since Unix dates

are always calculated in seconds since 1970-01-01 and not using a format that, for example, omits the century

digits.

All software that we have encountered for Linux uses the same or better date representation. Most large

critical packages will have a Y2K statement on their web page.

BIOS's may however contain Y2K limitations, but then this would have nothing to do with Linux per se.

It is of course diÆcult to vouch that an antiquated specialized piece of software will not su�er Y2K limitations

- that must be found out from the authors of that software, or through testing procedures.

In our testing, all the critical packages perform seamlessly through the turn of the millenia.

More information can be found at:

� Linux Y2K Information <http://www.linux.org/help/beginner/year2000.html>

26.6.12 Is Linux as secure as other servers?

Linux is as or more secure than typical Unix systems.

There are various issues that make it more and less secure:

Because GNU software is open source, any hacker can easily research the internal workings of critical system

services.

On the one hand, they may �nd a aw in these internals that can be indirectly exploited to compromised

the security of a server. In this way, Linux is LESS secure because security holes can be discovered by arbitrary

individuals.

176

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS 26.7. SOFTWARE

On the other hand, they may �nd a aw in these internals that they can report to the authors of that package,

who will quickly (sometimes within hours) correct the insecurity and release a new version on the internet. This

makes Linux MORE secure because security holes are discovered and reported by a wide network of programmers.

It is therefore questionable whether free software is more secure or not. We personally prefer to have access

to the source code so that we know what our software is doing.

Another issue is that Linux servers are often installed by lazy people who do not take the time to follow the

simplest of security guidelines, even though these guidelines are widely available and easy to follow. Such systems

are sitting ducks and are often attacked.

A further issue is that when a security hole is discovered, system administrators fail to head the warnings

announced to the Linux community. By not upgrading that service, they compromise security.

It is possible to make a Linux system completely air tight by following a few simple guidelines, like being

careful about what system services you expose, not allowing passwords to be compromised etc.

Because of the community nature of Linux users, there is openness and honesty with regard to security issues.

It is not found, for instance, that security holes are covered up by maintainers for commercial reasons. In this

way you can trust Linux far more than commercial institutions that think they have a lot to loose by disclosing

aws in their software.

26.7 Software

This section covers questions about what software is available for Linux, and about Linux's graphical user

interface.

26.7.1 What oÆce suites are there for Linux?

StarOÆce is an outstanding suite available for many Unix's and also for Win95. It has a large proportion of the

market share in the country where it was developed, Germany. It is now available for free o� the internet, or can

be ordered for $10 from Sun Microsystems who has recently purchased StarDivision.

Applixware is another comparable oÆce suite.

Corel's entire OÆce suite will be available for Linux in the year 2000.

KOÆce is a new freeware oÆce suite, and the Gnome project also has a powerful GUI spreadsheat application.

In addition to these, there are many free word processors and spread-sheats out their. Most will not be as

user friendly or as powerful as commercial oÆce suites, but are certainly speedier and more stable.

26.7.2 What is the best way to do professional typesetting on Linux?

You might be surprised that a WYSIWYG word processor is not the best way to produce professional docu-

ments. Under Linux there is a typesetting language called LaTeX which is used to produce most scienti�c and

mathematical journal articles in academia.

Complete online documentation for LaTeX installs by default with most popular Linux distributions. There

are also many tutorial books on the subject.

The typeset version of this document is produced using LaTeX.

26.7.3 What is the X Window System? Is there a graphical user interface for
Unix?

(This is somewhat of a technical description - the user need not be intimidated by any of this to get their

graphical environment running on Linux. To learn about di�erent Linux desktop environments, see `What is

GNOME/KDE?' below.)

177

26.7. SOFTWARE CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

Unix has long since had a standard graphical environment called the X Window System System [Version 11]

(X11 or X for short). The X Window System is a large and complicated system for generating graphics (windows)

to create the beautiful user interfaces that we are accustomed to. Linux has its own port of X called XFree86.

Most Unix systems run X. All of the Unix systems mentioned above run X. Hence Linux programs will

recompile for any of these systems with few or no changes and vice-versa.

X is a system of interfacing a program with the graphics that it would like to display. On the one hand sits

the program, and on the other sits an X `server'. This X server contains the necessary drivers for the particular

graphics hardware (card). The two communicate via a network socket. This means that if a computer is on a

network, the user can run any X application and cause it to display on the screen of any other machine. This is

why X is called a `network transparent' windowing system.

X allows tremendous exibility in an oÆce environment. Software need not be reinstalled on every machine

because it can be run from anywhere in the oÆce. Thin clients are possible and users can work on di�erent

machines without getting up from their desks - even if those machines run di�erent hardware or use a di�erent

Unix. Because X is such a well designed system, the performance penalty for doing this is not noticeable on 10

megabit ethernet - i.e. a typical LAN.

X itself, however, only allows primitive drawing commands - lines, text, circles. What gives Linux its beautiful

graphical interface is the window manager (what allows windows to be resized and minimized, and what would

display the `start' button and icons) and the widget libraries (see Gtk/Qt below) which produce complex graphics

from these drawing primitives. Because these can be chosen by the user, and are not an inherent part of X, your

Linux system can look like any of Win95, MacOS, Nextstep, or OS2. In this way graphics are far more exible

than non-X operating systems.

It has been claimed by the uninformed that X is over-engineered and cumbersome. Indeed this is complete

nonsense - the X Window System in an ingenious standard that solved the problem of graphics hardware in-

compatibility as well as network transparency. The computing industry could scarcely have asked for a better

standard.

26.7.4 What is Gtk?

Old Unix used to have horrible looking widget libraries (the GUI (Graphical User Interface) programmers libraries

used to draw buttons, menus etc.)

Sun came out with Xview - which was nicer looking but still quite hideous. A library called Motif was also

developed which was extremely powerful, good looking, but also very slow. Motif is still a proprietary library

which has to be purchased.

Various other widget libraries were also developed by free and proprietary groups. None met the demands of

a high class GUI that could become the universal free standard.

Gtk was then developed which was later improved and made object oriented in its current incarnation: Gtk+.

It is written in C.

Gtk is a programmers widget library that anyone can use to develop beautiful graphical applications under

the X Window System using C or C++. It is extremely clean, eÆcient and well implemented and is also very

fast.

Gtk consists of three libraries:

� libglib - this is a set of C utility functions to extend the standard C library calls.

� libgdk - this is a wrapper around low level X Window System calls providing GNU naming conventions for

functions and implementing a simpler way to access X's functionality.

� libgtk - uses gdk to implement higher level widgets like buttons, check boxes, entry widgets, menus, scroll-

bars etc.

26.7.5 What is Gnome?

Gnome is an ergonomic and aesthetically pleasing desktop environment for Unix built with Gtk. It aims to

achieve a consistent look and feel for all X applications and bring greater user-friendliness and beauty to the

178

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS 26.7. SOFTWARE

Unix screen. Version 1 of Gnome has recently been release and sports the utilities, look and feel expected of a

modern desktop environment.

Gnome is also a higher level programmers interface to Gtk, used for writing applications that conform to the

Gnome style guides (see Gnome Desktop <http://www.gnome.org/>).

Gnome also implements a remote procedure call mechanism where applications can communicate with each

other in a network transparent way. It uses Orbit - a free CORBA implementation for this.

26.7.6 What is Qt?

Qt is C++ widget library that is available for Unix as well as Win95 and Mac systems. It was originally

proprietary but is now Open Source although it is not under the GPL. It serves the same purpose as Gtk.

26.7.7 What is KDE?

KDE is to Qt as Gnome is to Gtk. The KDE project started before Gnome and is hence more advanced than

Gnome. It is mostly (all?) C++ based. (see KDE Desktop <http://www.kde.org/>)

26.7.8 What is Gimp?

Gimp stands for GNU Image Manipulation Program. Gimp is a tool for photo retouching, image composition

and image authoring. It is a general tool for manipulating raster type images like the imaging tools by Adobe.

Gimp is a state of the art piece of software. It was the �rst GPL desktop application to truly out-power even

the most expensive commercial equivalents. Anyone doing artwork or image editing should get their hands on

Gimp.

Gimp and Gtk were written in parallel. Gimp uses the Gtk library.

26.7.9 What media players, image viewers, mail/irc/news clients, and web
browsers are available for Linux?

Linux has a lot of free software programs performing all these functions. Netscape navigator/communicator is

available for Linux and is packaged with most distributions. The new Netscape 5.0 will be available soon and

promises to be faster and more powerful than any other browser.

There is an abundance of free sound players and image viewers/editors - some of these will exceed the

expectations of Win95 users. To play video �les will sometimes require proprietary modules that are not available

for Linux. However most common video formats can be viewed.

In many cases, the software you will �nd will not be as glitsy as its Win95 equivalent. In particular, a mail

client as powerful as Outlook Express is not available, although there are many very powerful text only mail

clients, and some up and coming graphical ones.

26.7.10 Can I use Visual Basic (VB) under Linux? What Unix alternatives are
there?

No. Visual Basic is a purely Microsoft standard and is not available for Unix. VB will probably never be widely

used in the Unix community where there are thought to be far better object oriented languages available.

There is however one product to convert VB code into java and and run active server pages: Halcyon Software

<http://www.vbix.com/>.

Python, for example, is an object oriented scripting language said to far exceed VB. Anyone wanting to do

Rapid Application Development (RAD) should look at the Python Home page <http://www.python.org/>. and

download the Gnome and database modules for python.

179

26.7. SOFTWARE CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

26.7.11 Can I run Active Server Pages under Linux?

See Halcyon Software <http://www.vbix.com/> for a product to run Active Server Pages under Unix.

Note that, once again, there are better utilities for creating interactive web pages under Linux. PHP, Perl

and Python are typically used for this.

26.7.12 Can I develop with Java under Linux?

Yes - Java development utilities and libraries are well supported under Linux. Linux has an extremely fast virtual

machine called ka�e, and there is a large support community for Java development under Linux.

IBM have released opensource 1.1 JDK for Linux, including superb best-of-breed Jikes compiler and their

own high-performance 1.1 JVM for Linux.

Linux's native C compiler now supports a Java frontend, allowing Java 1.1 programs to be compiled natively

on Linux (currently AWT is not supported, but hopefully a GTK-based AWT implementation will be available

soon).

Sun's 1.2 JDK is available for Linux, but not yet stable.

Borland has released JBuilder 3 for Linux, but being in pure Java, is very slow.

Some would recommend against programming in Java. There are already far more well established object

oriented scripting languages that are more powerful than Java and are freely available. You should in particular

investigate using Python before trying Java. Python is thought to o�er a much simpler and more intuitive syntax,

a�ording far more rapid development. Python can also be byte compiled (into its own native bytes or even into

Java bytes) and runs on as many di�erent platforms. Its syntax also doesn't su�er from the tedium that Java

inhereted from the C++ compiler language.

26.7.13 How do I develop platform independent programs under Linux?

With Python and wxWindows. See the Python Home page <http://www.python.org/> for more details. For

those who want to write a GUI program that runs under both Win95 and Unix, Python is BY FAR the best way

to do this. Do not try to do this with Java or Tcl. These are both redundant technologies.

26.7.14 Can I develop using C/C++ under Linux?

Yes. GNU in particular encourages C development because of its compatibility across other Unix's. Unix (and

in fact all operating systems) are entirely structured around the C language. C++ is also fully supported.

Note that these development environments are an inherent part of the Unix system. You will not have to

separately install them and they will come with all Linux distributions as a matter of course.

26.7.15 What Integrated Development Environments (IDE's) are available for
Linux? How do I develop my own applications?

Under Unix, all packages integrate with each other to provide seamless pooling of functionality. An IDE of the

kind used under Win95 is not recommended even though there are some available.

How Linux developers program is using a programmers text editor. Unix text editors have far more function-

ality than typical IDE's available for Win95. The user has more control and exibility than with a monolithic

IDE.

One of the many free text editors should be tried before going to a commercial development environment,

and will greater reduce your development time, once an initial learning curve is transcended. Also remember

that commercial development environments do not guarantee enduring support, whereas freeware languages stick

around for decades.

Your editor will interface with a variety of programs - the C/C++ compiler, linker, debugger, code syntax

tools, library and code organization tools - to provide what e�ectively behaves as an IDE.

180

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS 26.7. SOFTWARE

Using this process, development under Unix is sometimes thought to be a far faster and smoother process

than under Win95.

If you really want an IDE, there is Cygnus's a CodeFusion, KDE's KDevelop, Gnome's gIDE, and Metrowerks'

Code Warrior.

Borland has announced that they will be porting Delphi and their C/C++ Builder to Linux.

26.7.16 What other development languages are available for Linux? What is typ-
ically being used?

Perl is a well know scripting language used by administrators that is also excellent for CGI scripting. Its the

recommended language for writing non-interactive administrative tools.

Python (see above) is an object oriented scripting language that can be used to to build GUI programs. It

is the recommended language to build any type of interactive or GUI program. Python can be used to build

platform-independent GUI applications across Win95 and Unix using wxPython.

Tcl is a powerful scripting language that has been technically superseded by Python. It used to be the only

scripting language that could be used to build platform-independent GUI programs across Win95, Mac's, Unix's

and OS2, and may still do this better than any other language.

C/C++ are mentioned above.

Objective-C is another C variant that is supported.

Shell scripting is the `DOS Batch' programming of Unix. It is comprehensive enough that full GUI applications

can be written with it given some e�ort. Unix initialization, con�guration and administration are all driven by

shell scripts, and this is where they see their greatest usage.

Lisp (also known as Scheme) is possibly the most expressive language available and one of the oldest interpreted

languages. It was used to develop expert systems (arti�cial intelligence) and now sees wide use in making

applications that are extensible by giving them a builtin scheme interpretor. It is very popular in the free

software community.

A Pascal to C compiler is available for Linux. It can be used in this fashion as a Pascal development tool,

and for porting existing applications. It is recommended against writing new applications in Pascal, however.

Borland is in the process (?) of porting their development tools to Linux. I wouldn't bother with these if you

are developing a new application.

Java is mentioned above.

There a great many other languages available for Linux often developed as free alternatives to their commercial

counterparts. Do a net search to see if an interpretor/compiler is available for your language under Linux.

26.7.17 Are there SQL servers available for Linux? Are there free SQL servers?

Most of the commercial SQL servers are available for Linux, and certainly all of the better ones.

There is however an excellent freeware SQL server called Postgres, that obviates the need to pay the expensive

licensing fees of commercial servers. Postgres does not have all the features of some commercial systems and is

not as fast, but is adequate in 99% of all cases. Postgres also has a number of features that are not available for

other SQL servers that Postgres developers soon �nd are indispensable.

There are also other shareware SQL servers.

26.7.18 Is there a SWAN (Secure Wide Area Network) available for Linux?

Yes. A complete SWAN implementation called FreeSWAN is available under the GPL that implements the IETF

(Internet Engineering Task Force) SWAN protocols.

This is all you want as far as SWAN technology goes.

181

26.8. MICROSOFT ISSUES CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS

26.8 Microsoft Issues

26.8.1 What is the story with Microsoft being ruled a monopoly?

Microsoft was recently ruled to be a monopoly in a lawsuit between them and the justice department.

Microsoft has rebutted against the arguments of the court (why I dunno | since the decision has already

been made.)

I have become aware that the majority of people really don't have any idea what this law suite is about (I

certainly didn't until I had read the rebuttal.)

Most people see the question `is bundling IE with MSW illegal?' and the question `is MS a monopoly?'.

These two seem rather stupid questions, hence the wide controversy behind the case.

However, this is the media's projection of the case. In fact the court case has nothing to do with such

questions.

The US justice department is trying to show that Microsoft's has acted in violation of the Sherman act |

some business precedent in the US. Their violation is rather complicated: the phrase `bundling IE with MSW' is

the summary of a rather complicated legal argument.

The court case really has to do with Microsoft weilding too much power; that Microsoft has to be brought

down, and that there are no laws that clearly say that Microsoft is doing anything `wrong'.

On the other hand, Microsoft really has done some things which are atly unethical. See Caldera's law suite

for example (on their web site). Whether or not these are violations of speci�c laws is not a straight forward

question.

I think behind the scenes the department of justice is bent on bringing Microsoft down. They are doing it

through whatever means are necessary, including any kind of ridiculous argument they can come up with. The

whole court �asco is just a front and it may back�re on them completely. I hope it does, because its not Microsoft

that is primarily at fault here.

Microsoft is a monopoly for the following reasons:

1. Microsoft grossly violated the Sherman act by selling ANY products that could not be bought WITHOUT

ALSO BUYING WINDOWS 9x. The court NEVER mentions this because its an act of which every other

software house in the world is also guilty! The Sherman act states "...an agreement by a party to sell one product

but only on the condition that the buyer also purchases a di�erent (or tied) product, or at least agrees that he

will not purchase that product from any other supplier." The term `agreement' should extend to `requirement' in

the case of software, provided the functionality of the one product is considered reasonably separate from that of

another, as is the case with word processors, spread sheets etc. compared to the operating system that they run

on. This extends the obvious intention of "...an agreement..." to apply to software. This is the single overriding

reason why Microsoft is a monopoly. They pursued these habits unchecked for the entire of their growth, and

no-one said anything. This precisely where the law needs to be extended, simply because it is far too easy to

make software that forces people to buy other software.

Consider the analogy in the car industry. Say BMW manufactured a 4x4. Then they manufactured a trailer

that the 4x4 could tow. The 4x4 however has a special hook that only a BMW trailer can �t. However, BMW

has a patent on that hook, so that no one can manufacture a trailer that can be towed by a BMW or a car that

can tow a BMW trailer. It would be commercial suicide for BMW to place such a limitation on their products,

where they have only a few percent of the market share on trailers and cars. However, lets say that they had 80%

of the market share and implemented this scheme. Now would you consider BMW's tactics unfair? Even if they

aren't unfair per se, they are certainly bad for the industry. You can see that the scenario is totally unrealistic

from an engineering point of view | PHYSICAL products have their own limitations which prevent companies

from becoming monopolies. Not so with software products.

2. Microsoft has a superb marketing strategy.

3. Microsoft is not just a software company. It is a massive money pyramid scheme that uses loopholes in

�nancial indicators to appear to be worth ten times its actual value.

4. Microsoft is a monopoly because of the secrecy of its protocols, API's and �le formats.

5. Microsoft is a monopoly because it really DOES produce SOME excellent software.

182

CHAPTER 26. CORPORATE FREQUENTLY ASKED QUESTIONS 26.8. MICROSOFT ISSUES

6. Bill Gates really is a nice guy; albeit a little misguided; I would sooner him running the world than a lot

of other CEOs.

7. LAST AND LEAST, Microsoft is a monopoly because of unethical business practices.

183

